南极普里兹湾海域湍流扩散系数估计

丁文祥, 梁楚进, 廖光洪, 高立宝

海洋学研究 ›› 2017, Vol. 35 ›› Issue (1) : 14-24.

PDF(4070 KB)
PDF(4070 KB)
海洋学研究 ›› 2017, Vol. 35 ›› Issue (1) : 14-24. DOI: 10.3969/j.issn.1001-909X.2017.01.002
研究论文

南极普里兹湾海域湍流扩散系数估计

  • 丁文祥1,2, 梁楚进*1,2, 廖光洪1,2, 高立宝3
作者信息 +

The turbulent diffusivity estimation in Prydz Bay, Antarctic

  • DING Wen-xiang1,2, LIANG Chu-jin*1,2, LIAO Guang-hong1,2, GAO Li-Bao3
Author information +
文章历史 +

摘要

基于Thorpe尺度方法,利用CTD数据,计算了南极普里兹湾海域的Thorpe尺度和湍流扩散系数,分析了观测区域(64°~69°S,66°~80°E)湍流翻转现象的强弱及分布。结果表明,在海底和地形粗糙区存在较大的Thorpe尺度(较强湍流翻转)和湍流扩散系数,湍流扩散系数最大值能达到10-2m2/s量级,比平坦开阔海洋高2~3个数量级,部分观测站位的湍流扩散系数和湍动能耗散率表现出大-小-大的垂向分布结构,总水深较深的区域尤为明显;深水区域的浮力频率在海表面到500 m层比较大,浅水区域该现象不明显;湍动能耗散率在(67.25°S,73°E)周围和经度为78°E的各站位都表现相对较大,能达到10-6 w/kg量级,个别站位甚至能达到10-5 w/kg量级。

Abstract

Thorpe scale and turbulent diffusivities in Prydz Bay of Antarctica were calculated based on Thorpe method and Conductivity-Temperature-Depth data. The strength of turbulent overturn was analyzed and its spatial distribution was also investigated. The results show that the larger Thorpe scale and turbulent diffusivities occur in rough topographic area and near the sea floor, and the maximum value of turbulent diffusivities exceeds 10-2 m2/s, which is about two or three orders of magnitude larger than that in the open ocean. Turbulent diffusivities and dissipation rate of turbulent kinetic energy show high-low-high vertical structure in some observational stations, especially in deep area. The larger values of buoyancy frequency appear in upper 500 m water column in deep area, but this phenomenon is not obvious in shallow area. The dissipation rates of turbulent kinetic energy in the stations around the point(67.25°S,73°E) and along the 78°E sections are quite large, which exceed 10-6 w/kg, and even reach 10-5 w/kg in a few stations.

关键词

普里兹湾 / Thorpe尺度 / 湍流扩散系数 / 湍动能耗散率

Key words

Prydz Bay / Thorpe scale / turbulent diffusivities / dissipation rate of turbulent kinetic energy

引用本文

导出引用
丁文祥, 梁楚进, 廖光洪, 高立宝. 南极普里兹湾海域湍流扩散系数估计[J]. 海洋学研究. 2017, 35(1): 14-24 https://doi.org/10.3969/j.issn.1001-909X.2017.01.002
DING Wen-xiang, LIANG Chu-jin, LIAO Guang-hong, GAO Li-Bao. The turbulent diffusivity estimation in Prydz Bay, Antarctic[J]. Journal of Marine Sciences. 2017, 35(1): 14-24 https://doi.org/10.3969/j.issn.1001-909X.2017.01.002
中图分类号: P731   

参考文献

[1] MUNK W H. Abyssal recipes[J].Deep Sea Research and Oceanographic Abstracts,1966,13(4):707-730.
[2] GREGG M C. Diapycnal mixing in the thermocline: A review[J]. Journal of Geophysical Research: Oceans (1978—2012),1987,92(C5):5 249-5 286.
[3] LEDWELL J R, WATSON A J, LAW C S. Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment[J]. Nature,1993,364(6439):701-703.
[4] LUECK R G, MUDGE T D. Topographically induced mixing around a shallow seamount[J]. Science,1997,276(5320):1 831-1 833.
[5] POLZIN K L, TOOLE J M, LEDWELL J R, et al. Spatial variability of turbulent mixing in the abyssal ocean[J]. Science,1997,276(5309):93-96.
[6] CARTER G S, GREGG M C. Intense, variable mixing near the head of Monterey Submarine Canyon[J]. Journal of Physical Oceanography,2002,32(11):3 145-3 165.
[7] HEYWOOD K J, GARABATO A C N, STEVENS D P. High mixing rates in the abyssal Southern Ocean[J]. Nature,2002,415(6875):1 011-1 014.
[8] GARABATO A C N, POLZIN K L, KING B A, et al. Widespread intense turbulent mixing in the Southern Ocean[J]. Science,2004,303(5655):210-213.
[9] GARABATO A C N, STEVENS D P, WATSON A J, et al. Short-circuiting of the overturning circulation in the Antarctic Circumpolar Current[J]. Nature,2007,447(7141):194-197.
[10] SLOYAN B M. Spatial variability of mixing in the Southern Ocean[J]. Geophysical Research Letters,2005,32(18):doi:10.1029/2005GL023568.
[11] LEDWELL J R, St. LAURENT L C, GIRTON J B, et al. Diapycnal mixing in the Antarctic circumpolar current[J]. Journal of Physical Oceanography,2011,41(1):241-246.
[12] NAVEIRA GARABATO A C, OLIVER K I C, WATSON A J, et al. Turbulent diapycnal mixing in the Nordic seas[J]. Journal of Geophysical Research: Oceans,2004,109(C12010):doi:10.1029/2004JC002411.
[13] KUNZE E, FIRING E, HUMMON J M, et al. Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles[J]. Journal of Physical Oceanography,2006,36(8):1 553-1 576.
[14] THORPE S A. Turbulence and mixing in a Scottish loch[J]. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences,1977,286(1334):125-181.
[15] DILLON T M. Vertical overturns: A comparison of Thorpe and Ozmidov length scales[J]. J Geophys Res,1982,87(C12):9 601-9 613.
[16] PARK Y H, FUDA J L, DURAND I, et al. Internal tides and vertical mixing over the Kerguelen Plateau[J]. Deep Sea Research Part II: Topical Studies in Oceanography,2008,55(5):582-593.
[17] FERRON B, MERCIER H, SPEER K, et al. Mixing in the Romanche fracture zone[J]. Journal of Physical Oceanography,1998,28(10):1 929-1 945.
[18] GARGETT A, GARNER T. Determining Thorpe scales from ship-lowered CTD density profiles[J]. Journal of Atmospheric and Oceanic Technology,2008,25(9):1 657-1 670.
[19] OZMIDOV R V. On the turbulent exchange in a stably stratified ocean[J]. Izv Acad Sci USSR, Atmos Oceanic Phys,1965,1(8):853-860.
[20] CRAWFORD W R. A comparison of length scales and decay times of turbulence in stably stratified flows[J]. Journal of Physical Oceanography,1986,16(11):1 847-1 854.
[21] MUENCH R, PADMAN L, GORDON A, et al. A dense water outflow from the Ross Sea, Antarctica: Mixing and the contribution of tides[J]. Journal of Marine Systems,2009,77(4):369-387.
[22] YANG Qing-xuan, TIAN Ji-wei, ZHAO Wei, et al. Turbulent dissipation and mixing in Prydz Bay[J]. Chinese Journal of Oceanology and Limnology,2013,31(2):445-453.
[23] HUANG Yi-pu, CAI Ping-he, CHEN Min, et al.Deuterium tracing study on water mass and circulation in Prydz Bay and its adjacent sea[M]//CHEN Li-qi.Study on the response and feedback of antarctic region to global change.Beijing:China Ocean Press,2004:59-71.
黄奕普,菜平河,陈敏,等.普里兹湾及临近海域水团、环流的氘示踪研究[M]//陈立奇.南极地区对全球变化的响应与反馈作用研究.北京:海洋出版社,2004:59-71.
[24] VAZ R A N, LENNON G W. Physical oceanography of the Prydz Bay region of Antarctic waters[J]. Deep Sea Research Part I: Oceanographic Research Papers,1996,43(5):603-641.

基金

南北极环境综合考察与评估专项项目资助(CHINARE 2015-01-01,CHINARE2016-04-01-01);全球变化与海气相互作用专项项目资助(GASI-03-01-01-07);国家自然科学基金项目资助(41376033);国家海洋局第二海洋研究所基本科研业务费专项项目资助(SOEDZZ1517,SOEDZZ1519,JT1506)

PDF(4070 KB)

Accesses

Citation

Detail

段落导航
相关文章

/