针对深海采矿实际需求,提出将集矿车上的液压站与集矿车分离,设计成相对独立、悬浮于集矿车前部上方的浮游体。设计了多金属结核概念车浮游体(以下简称浮游体)外形,并利用三维设计软件SolidWorks建立了其三维几何模型。在此基础上,对几何模型进行简化处理,建立了浮游体流体动力学计算模型。利用流体动力学仿真分析软件ANSYS CFX,采用雷诺时均算法(RANS算法)和两方程的k-ε湍流模型,得到了不同工况的阻力数据。采用Matlab曲线拟合功能,研究了浮游体阻力特性,验证了外形设计方案的可行性。
Abstract
Aiming at the practical demand of deep ocean mining, the hydraulic station on the nodule collector was proposed to separate from the nodule collector and hydraulic station was designed as a floating body, relatively independent and suspended above the front of the nodule collector. Contour of floating body for polymetallic nodule concept vehicle (referred to as floating body) was designed, and its 3D model was established adopting SolidWorks. The hydrodynamic and computational model of the floating body was established, after simplifying the 3D model. Reynolds average navier-stokes algorithm (RANS algorithm) and turbulence model were applied, and drag data under the condition of different working conditions was obtained adopting fluid dynamics simulation and analysis software ANSYS CFX. Drag characteristic of floating body was studied adopting curve fitting function of Matlab, and the feasibility of contour design was verified.
关键词
深海采矿 /
浮游体外形 /
流体动力学仿真分析 /
阻力特性
Key words
deep ocean mining /
contour of floating body /
fluid dynamics simulation and analysis /
drag characteristic
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] DAI Yu, LIU Shao-jun. Researches on deep ocean mining robots: status and development[J]. Robot,2013,35(3):363-375.
戴瑜,刘少军.深海采矿机器人研究:现状与发展[J].机器人,2013,35(3):363-375.
[2] LIU Shao-jun, LIU Chang, DAI Yu. Status and progress on researches and developments of deep ocean mining equipments[J]. Journal of Mechanical Engineering,2014,50(2):8-18.
刘少军,刘畅,戴瑜.深海采矿装备研发的现状与进展[J].机械工程学报,2014,50(2):8-18.
[3] DAI Yu, LIU Shao-jun. Establishment of the dynamic model of the total deep ocean mining system and fast simulation of its integrated operation process[J]. Journal of Mechanical Engineering,2012,48(9):79-88.
戴瑜,刘少军.深海采矿整体系统动力学建模及联动开采作业过程仿真分析[J].机械工程学报,2012,48(9):79-88.
[4] MENG Ling-shuai, LIN Yang, ZHENG Rong, et al. Mechanical design and implementation of a modular autonomous underwater vehicle[J]. Robot,2016,38(4):395-401.
孟令帅,林扬,郑荣,等.模块化自主水下机器人的机械设计与实现[J].机器人,2016,38(4):395-401.
[5] ZHANG De-liang. A course in computational fluid dynamics[M]. Beijing: Higher Education Press,2010:19-36.
张德良.计算流体力学教程[M].北京:高等教育出版社,2010:19-36.
[6] HU Zhi-qiang, YI Rui-wen, LIN Yang, et al. Numerical calculation methods for hydrodynamics of unmanned underwater vehicles based on body-fixed coordinate frames[J]. Chinese Science Bulletin,2013,58(Suppl.Ⅱ):55-66.
胡志强,衣瑞文,林扬,等.基于随体坐标系的水下机器人水动力数值计算方法[J].科学通报,2013,58(增刊Ⅱ):55-66.
[7] SOHANKAR A, NORBERG C, DAVIDSON L. Low-reynolds-number flow around a square cylinder at incidence: study of blockage, onset of vortex shedding and outlet boundary condition[J]. International Journal for Number Methods in Fluids,1998,26(1):39-56.
[8] WANG Mei-ting, QI Yong-feng, DAI Zhi-guang, et al. Research on shape and linear sailing resistance character of mini underwater robot[J]. Machinery Design & Manufacture,2013,12(1):35-38.
王妹婷,齐永锋,戴志光,等.小型水下机器人外形及其直航阻力特性研究[J].机械设计与制造,2013,12(1):35-38.
[9] HAO Ying-ze,LIN Fan-cai,LIU Bai-shun. Sailed resistance analysis and drag reduction measures of submarine[C]//Proceedings of oversize ship maneuvering and ship security and management,2003:141-144.
郝英泽,林凡彩,刘百顺.浅析潜艇水下航行阻力及减阻措施[C]//特大型船舶操纵和船舶安全与管理论文集,2003:141-144.
[10] NGUYEN B,HOPKIN D. Modeling autonomous underwater vehicle(AUV)operations in mine hunting[C]//Oceans Europe #Brest France,2005:533-538.
基金
国家高技术研究发展计划(“863”计划)项目资助(2012AA091201)