空间变异对海洋叶绿素a质量浓度遥感产品精度验证的影响

蒋锦刚, 冯慧云, 张亚国, 何贤强

海洋学研究 ›› 2021, Vol. 39 ›› Issue (1) : 9-19.

PDF(6517 KB)
PDF(6517 KB)
海洋学研究 ›› 2021, Vol. 39 ›› Issue (1) : 9-19. DOI: 10.3969/j.issn.1001-909X.2021.01.002
研究论文

空间变异对海洋叶绿素a质量浓度遥感产品精度验证的影响

  • 蒋锦刚1,2, 冯慧云*2, 张亚国2, 何贤强1,3
作者信息 +

Impact of spatial variability on the validation of ocean chlorophyll-a concentration remote sensing product

  • JIANG Jin'gang1,2, FENG Huiyun*2, ZHANG Yaguo2, HE Xianqiang1,3
Author information +
文章历史 +

摘要

海洋叶绿素a质量浓度遥感产品是海洋初级生产力与海洋生态系统固碳能力研究的重要数据源,为了保证数据的可靠性,对遥感产品进行精度验证以及验证误差的成因分析尤为重要。遥感产品的验证过程中,由于空间变异的存在,使得遥感像元尺度内的实测数据具有不同的离散程度和统计分布特征,并由此产生了不同的误差统计结果。本文选择MODIS-Aqua、MODIS-Terra、MERIS、SeaWiFS等卫星传感器叶绿素a质量浓度遥感产品为研究对象,统计分析了数据产品的空间变异与验证精度的关系。结果表明:空间变异是造成验证误差的直接原因之一,平均绝对百分比误差(Mean Absolute Percentage Error:MAPE)与空间变异系数(Coefficient of Variation: CV)呈幂指数模型关系;当CV<0.05时,MAPECV的增加明显;当CV>0.15时,MAPE的变化趋于平缓。不同卫星传感器叶绿素a质量浓度产品验证结果表明,SeaWiFS精度最高,MERIS次之,MODIS-Terra精度最低。

Abstract

Ocean chlorophyll-a concentration remote sensing product is important data sources for the studies of ocean primary productivity and carbon sequestration capacity of ocean ecosystems. In order to ensure the data reliability, it is particularly important to verify the accuracy of remote sensing product and analyze the causes of validation errors. In the verification of remote sensing products, due to the existence of spatial variation, the measured data within the remote sensing pixel have different statistical distribution characteristics, and thus produce different statistical error results. In this work, chlorophyll-a concentration remote sensing products derived from MODIS-Aqua, MODIS-Terra, MERIS and SeaWiFS satellite sensors, were quantitatively analyzed on the relationship between spatial variability and validation accuracy. The results of statistical analysis show that spatial variation is one of the direct causes of validation error. The relationship between Mean Absolute Percentage Error (MAPE) and spatial Coefficient of Variation (CV) is in accordance with power exponential model. When CV<0.05, MAPE increases significantly with CV, and when CV>0.15, MAPE changes gently. The validation results of different chlorophyll-a concentration remote sensing products show that SeaWiFS has the highest accuracy, MERIS takes the second place, and MODIS-Terra has the worst accuracy.

关键词

空间变异 / 卫星遥感 / 叶绿素a / 精度验证

Key words

spatial variability / satellite remote sensing / chlorophyll-a / validation

引用本文

导出引用
蒋锦刚, 冯慧云, 张亚国, 何贤强. 空间变异对海洋叶绿素a质量浓度遥感产品精度验证的影响[J]. 海洋学研究. 2021, 39(1): 9-19 https://doi.org/10.3969/j.issn.1001-909X.2021.01.002
JIANG Jin'gang, FENG Huiyun, ZHANG Yaguo, HE Xianqiang. Impact of spatial variability on the validation of ocean chlorophyll-a concentration remote sensing product[J]. Journal of Marine Sciences. 2021, 39(1): 9-19 https://doi.org/10.3969/j.issn.1001-909X.2021.01.002
中图分类号: TP79   

参考文献

[1] 林明森,张有广,袁欣哲.海洋遥感卫星发展历程与趋势展望[J].海洋学报,2015,37(1):1-10.
LIN Mingsen, ZHANG Youguang, YUAN Xinzhe. The development course and trend of ocean remote sensing satellite[J]. Haiyang Xuebao,2015,37(1):1-10.
[2] 陈清莲,唐军武,王项南.海洋光学遥感器的辐射定标与数据真实性检验综述[J].海洋技术,1998,17(3):14-26.
CHEN Qinglian, TANG Junwu, WANG Xiangnan. Review on the calibration and validation for ocean color sensing[J]. Ocean Technology, 1998, 17(3): 14-26.
[3] WERDELL P J, BAILEY S W. An improved bio-optical data set for ocean color algorithm development and satellite data product validation[J]. Remote Sensing of Environment, 2005, 98(1): 122-140.
[4] BAILEY S W, WERDELL P J. A multi-sensor approach for the on-orbit validation of ocean color satellite data products[J]. Remote Sensing of Environment, 2006, 102(2): 12-23.
[5] MOORE T S, CAMPBELL J W, DOWELL M D. A class-based approach to characterizing and mapping the uncertainty of the MODIS ocean chlorophyll product[J]. Remote Sensing of Environment, 2009, 113(11): 2424-2430.
[6] CUI Tingwei, ZHANG Jie, TANG Junwu, et al. Assessment of satellite ocean color products of MERIS, MODIS and SeaWiFS along the East China Coast(in the Yellow Sea and East China Sea)[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 87: 137-151.
[7] CUI T W, ZHANG J, WANG K,et al. Remote sensing of chlorophyll a concentration in turbid coastal waters based on a global optical water classification system[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 163(5): 187-201.
[8] PEREIRA E S, GARCIA C. Evaluation of satellite-derived MODIS chlorophyll algorithms in the northern Antarctic Peninsula[J]. Deep-Sea Research, 2018, 149(3): 124-137.
[9] WANG Menghua, SON S H, WEI Shi. Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data[J]. Remote Sensing of Environment, 2009, 113(3): 635-644.
[10] 叶小敏,丁静,丘仲锋,等.水色水温遥感产品真实性检验误差分析[J].遥感技术与应用,2015,30(4):719-724.
YE Xiaomin, DING Jing, QIU Zhongfeng, et al. Error analysis for the validation of ocean color and sea surface temperature remote sensing products[J]. Remote Sensing Technology and Application, 2015, 30(4): 719-724.
[11] 蒋锦刚,徐曜,聂晨晖,等.海表面温度时空变异特征及对验证误差影响[J].遥感学报,2019,23(2):336-348.
JIANG Jin'gang, XU Yao, NIE Chenhui,et al. Influence of temporal and spatial variation of sea surface temperature on validation errors[J]. Journal of Remote Sensing, 2019,23(2):336-348.
[12] 李豪,何贤强,丁静,等.春季辽东湾静止轨道海洋水色遥感产品的真实性检验[J].光学学报,2016,36(4):9-20.
LI Hao, HE Xianqiang, DING Jing,et al. Validation of the remote sensing products retrieved by geostationary ocean color imager in Liaodong Bay in spring[J]. Acta Optica Sinica, 2016, 36(4): 9-20.
[13] O'REILLY J E, MARITORENA S, MITCHELL B G, et al. Ocean color chlorophyll algorithms for SeaWiFS[J]. Journal of Geophysical Research, 1998, 103(C11): 24937-24953.
[14] O'REILLY J E, WERDELL P J. Chlorophyll algorithms for ocean color sensors-OC4, OC5 & OC6[J].Remote Sensing of Environment, 2019, 229(8): 32-47.
[15] HU Chuanmin. An empirical approach to derive MODIS ocean color patterns under severe sun glint[J].Geophysical Research Letters, 2011, 38(L01603): 1-5.
[16] HU Chuanmin, LEE Zhongping, FRANZ B. Chlorophyll-a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference[J]. Journal of Geophysical Research, 117(C1): 1-25.
[17] 沈永林,刘修国,吴立新,等.Hyperion高光谱影像坏线修复的局部空间-光谱相似性测度方法[J].武汉大学学报(信息科学版),2017,42(4):456-462.
SHEN Yonglin, LIU Xiuguo, WU Lixin, et al.A local spectral-spatial similarity measure for bad line correction in hyperion hyperspectral data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4): 456-462.
[18] JAY S, GUILLAUME M. A novel maximum likelihood based method for mapping depth and water quality from hyperspectral remote-sensing data[J]. Remote Sensing of Environment, 2014, 147(18): 121-132.
[19] ZIBORDI G, HOLBEN B, SLUTSKER I,et al.AERONET-OC: A network for the validation of ocean color primary products[J]. Jornal of Atmospheric and Oceanic Technology, 2009, 26: 1634-1651.
[20] 文斐,孙晓霞,郑珊,等.2011年春、夏季黄、东海叶绿素a和初级生产力的时空变化特征[J].海洋与湖沼,2012,43(3):438-444.
WEN Fei, SUN Xiaoxia, ZHENG Shan, et al. Spatial and seasonal variations of chlorophyll a and primary productivity in spring and summer in the Yellow Sea and East China Sea[J]. Oceanologla et Limnologla Sinica, 2012, 43(3): 438-444.
[21] 陈法锦,曾珍,孟亚飞,等.2013年夏季琼东海域营养盐与叶绿素a的周日波动及其影响因素[J].海洋学报,2016,38(4):76-83.
CHEN Fajin, ZENG Zhen, MENG Yafei, et al. Diel variation of nutrients and chlorophyll a concentration in the Qiongdong sea region during the summer of 2013[J]. Haiyang Xuebao, 2016, 38(4): 76-83.
[22] SÁ C, D'ALIMONTE D, BRITO A C,et al.Validation of standard and alternative satellite ocean-color chlorophyll products off Western Iberia[J].Remote Sensing of Environment, 2015, 168(10): 403-419.
[23] HE Junyu, CHEN Yijun, WU Jiaping, et al. Space-time chlorophyll-a retrieval in optically complex waters that accounts for remote sensing and modeling uncertainties and improves remote estimation accuracy[J]. Water Research, 2020, 171(3): 115403.
[24] SINGHAL G, BANSOD B, MATHEW L,et al. Chlorophyll estimation using multi-spectral unmanned aerial system based on machine learning techniques[J]. Remote Sensing Applications: Society and Environment, 2019, 15(8): 100235.
[25] YUAN Qiangqiang, SHEN Huanfeng, LI Tongwen,et al.Deep learning in environmental remote sensing: Achievements and challenges[J]. Remote Sensing of Environment, 2020, 241(5): 111716.
[26] MÉLIN F, VANTREPOTTE V, CHUPRIN A, et al. Assessing the fitness-for-purpose of satellite multi-mission ocean color climate data records: A protocol applied to OC-CCI chlorophyll-a data[J].Remote Sensing of Environment, 2017,203(12): 139-151.

基金

南方海洋科学与工程广东省实验室(湛江)项目(ZJW-2019-08);中国科学院STS区域重点项目(KFJ-STS-QYZD-173);水体污染控制与治理科技重大专项(2017ZX07603-005)

PDF(6517 KB)

Accesses

Citation

Detail

段落导航
相关文章

/