[1] SEARLE R C. Mid-ocean ridges[M]. Cambridge: Cambridge University Press, 2013:1-364. [2] MURTON B J, RONA P A. Carlsberg Ridge and Mid-Atlantic Ridge: Comparison of slow spreading centre analogues[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015,121: 71-84. [3] HANNINGTON M, JAMIESON J, MONECKE T, et al. The abundance of seafloor massive sulfide deposits[J]. Geology, 2011,39(12):1 155-1 158. [4] GERMAN C, PETERSEN S, HANNINGTON M, et al. Hydrothermal exploration of mid-ocean ridges: Where might the largest sulfide deposits be forming[J]? Chemical Geology, 2015,420:114-126. [5] RAMANA M V, RAMPRASAD T, KAMESH R K A, et al. Geophysical studies over a segment of the Carlsberg Ridge, Indian Ocean[J]. Marine Geology, 1993,115(1):21-28. [6] KAMESH R K A, CHAUBEY A K, AMARNATH D, et al. Morphotectonics of the Carlsberg Ridge between 62°20′ and 66°20′E, northwest Indian Ocean[J]. Marine Geology, 2008,252(3):120-128. [7] FOURNIER M, PATRIAT P, LEROY S. Reappraisal of the Arabia–India–Somalia triple junction kinematics[J]. Earth and Planetary Science Letters, 2001,189(3):103-114. [8] MURTON B J, BAKER E T, ANDS C M, et al. Detection of an unusually large hydrothermal event plume above the slow-spreading Carlsberg Ridge: NW Indian Ocean[J]. Geophysical Research Letters, 2006,33:L10608. [9] DURBAR R, KAMESH R K A, BAKER E T, et al. Hydrothermal plumes over the Carlsberg Ridge, Indian Ocean[J]. Geochemistry Geophysics Geosystems, 2012, 3017(13):605-606. [10] HAN Xi-qiu, WU Zhao-cai, QIU Bi-bo. The Segmentation of the Carlsberg Ridge in the Northwest Indian Ocean and its tectonic and geomorphologic characteristics——Introduction to China Oceans 24 Cruise Survey results[R]// Deep sea research and earth system science conference,2012. 韩喜球,吴招才,裘碧波.西北印度洋Carlsberg脊的分段性及其构造地貌特征——中国大洋24航次调查成果介绍[R]//深海研究与地球系统科学学术研讨会,2012. [11] MACDONALD K C, SCHEIRER D S, CARBOTTE S M. Mid-ocean ridges: Discontinuities, segments and giant cracks[J]. Science, 1991,253:986-994. [12] DETRICK R S, NEEDHAM H D, RENARD V. Gravity anomalies and crustal thickness variations along the Mid-Atlantic Ridge between 33°N and 40°N[J]. Journal of Geophysical Research, 1995,100(B3):3 767-3 787. [13] GRACIA E, CHARLOU J, KNOERY J, et al. Non-transform offsets along the Mid-Atlantic Ridge south of the Azores(38°N-34°N): Ultramafic exposures and hosting of hydrothermal vents[J]. Earth and Planetary Science Letters, 2000,177(1-2):89-103. [14] BEHN M D, ITO G. Magmatic and tectonic extension at mid-ocean ridges: 1. Controls on fault characteristics[J]. Geochemistry, Geophysics, Geosystems, 2008,9(8):1-22. [15] URICK R J. Principles of underwater sound for engineers[M].3rd ed. New York: McGraw-Hill, 1983. [16] JOHNSON H P, HELFERTY M. The geological interpretation of side-scan sonar[J]. Reviews Geophysics, 1990,28(4):357-380. [17] LURTON X, LAMARCHE G. Backscatter measurements by seafloor-mapping sonars: Guidelines and recommendations, GeoHab Backscatter Working Group report[C]. 2015:1-200. [18] MITCHELL N. The variation of backscatter with incidence angle for sonar data over MOR volcanics[C]// PURDY G M, FRYER G J. Proc. workshop on the physical properties of volcanic seafloor,1990: 175-179. [19] MITCHELL N. A model for attenuation of backscatter due to sediment accumulations and its application to determine sediment thickness with GLORIA sidescan sonar[J]. Journal of Geophysical Research, 1993,98(B12):22 477-22 493. [20] GOFF J A, OLSON H C, DUNCAN C S. Correlation of side-scan backscatter intensity with grain-size distribution of shelf sediments, New Jersey margin[J]. Geo-Marine Letters, 2000,20(1):43-49. [21] ELLINGSEN K E, GRAY J S, BJØRNBOM E. Acoustic classification of seabed habitats using the QTC VIEW System[J]. Journal of Marine Science, 2002,59(4):825-835. [22] EDWARDS B D, DARTNELL P, CHEZAR H. Characterizing benthic substrates of Santa Monica Bay with seafloor photography and multibeam sonar imagery[J]. Marine Environmental Research, 2003,56(1):47-66. [23] BEYER A, CHAKRABORTY B, SCHENKE H W. Seafloor classification of the mound and channel provinces of the Porcupine Seabight: an application of the multibeam angular backscatter data[J]. International Journal of Earth Sciences, 2007,96(1):11-20. [24] LEE S H, KIM K H. Side-scan sonar characteristics and manganese nodule abundance in the Clarion-Clipperton Fracture Zones, NE Equatorial Pacific[J]. Marine Georesources and Geotechnology, 2004,22:100-114. [25] CHAKRABORTY B, KODAGALI V. Characterizing Indian Ocean manganese nodule-bearing seafloor using multi-beam angular backscatter[J]. Geo-Marine Letters, 2004,24:8-13. [26] THOMAS K. Developing a strategy for the exploration of vast seafloor areas for prospective manganese nodule fields[C]//ZHOU H Y, MORGAN C L. Marine minerals: Finding the right balance of sustainable development and environmental protection.41st Conference of Underwater Mining Institute, Shanghai. 2012. [27] ZHANG Guo-yin, TAO Chun-hui, LI Huai-ming, et al. Seafloor classification in hydrothermal field using multi-beam sonar[J]. Marine Geology Frontiers, 2012,28(7):59-65. 张国堙,陶春辉,李怀明,等.多波束声参数在海底热液区底质分类中的应用——以东太平洋海隆“宝石山”热液区为例[J]. 海洋地质前沿,2012,28(7):59-65. [28] KODAMA T, MAEDA K. Interpretation of a backscattering image for the prospecting of Co-rich Manganese Crust[J]. The Journal of the Acoustical Society of America, 1996,100(4): 2 667. [29] USUI A, OKAMOTO N. Geophysical and geological exploration of cobalt-rich ferromanganese crusts: An attempt of small-scale mapping on a Micronesian Seamount[J]. Marine Georesources and Geotechnology, 2010,28(3):192-206. [30] YANG Yong, HE Gao-wen, ZHU Ke-chao, et al. Classification of seafloor geological types of Qianyu seamount from Mid-Pacific seamounts using multibeam backscatter intensity data[J]. Earth Science, 2016,41(4):718-728. 杨永,何高文,朱克超,等.利用多波束回波强度进行中太平洋潜鱼海山底质分类[J]. 地球科学, 2016,41(4):718-728. [31] KRIGE D G. A statistical approach to some basic mine valuation problems on the Witwatersrand[J]. The Journal of the Chemical, Metallurgical and Mining Society of South Africa, 1951,52(6):119-139. [32] MATHERON G. Principles of geostatistics[J]. Economic Geology, 1963,58:1 246-1 266. [33] WESSEL P, SMITH W H F, SCHARROO R, et al. Generic mapping tools: Improved version released, EOS Trans[J]. AGU, 2013,94(45):409-410. [34] FONSECA L, CALDER B. Geocoder: an efficient backscatter mapconstructor[C]//Proc of Hydrographic 2005, Hydrographic Society of America, San Diego, CA, 2005. [35] FONSECA L, MAYER L. Remote estimation of surficial seafloor properties through the application Angular Range Analysis to multibeam sonar data[J]. Marine Geophysical Researches, 2007,28:119-126. [36] RZHANOV Y, FONSECA L, MAYER L. Construction of seafloor thematic maps from multibeam acoustic backscatter angular response data[J]. Computers and Geosciences, 2012,41:181-187. [37] BEAUDOIN J D, CLARKE H J E, AMEELE V D, et al. Geometric and radiometric correction of multibeam backscatter derived from Reson 8101 Systems[C]. Canadian Hydrographic Conference, 2002:242. [38] ANDERSON M, CHADWICK W W, HANNINGTON M D, et al. Geological interpretation of volcanism and segmentation of the Mariana back-arc spreading center between 12.7°N and 18.3°N[J]. Geochemistry, Geophysics, Geosystems, 2017,18:1-35. [39] WANG Ye-jian, HAN Xi-qiu, PETERSEN S, et al. Mineralogy and trace element geochemistry of sulfide minerals from the Wocan Hydrothermal Field on the slow-spreading Carlsberg Ridge, Indian Ocean[J]. Ore Geology Reviews, 2016,84:1-19. [40] HAN Xi-qiu, WANG Ye-jian, Li Xiao-hu, et al. First ultramafic-hosted hydrothermal sulfide deposit discovered on the Carlsberg Ridge, Northwest Indian Ocean[R]. Hangzhou, 2015. [41] PAULATTO M, CANALES J P, DUNN R A, et al. Heterogeneous and asymmetric crustal accretion: New constraints from multibeam bathymetry and potential field data from the Rainbow area of the Mid-Atlantic Ridge (36°15′N)[J]. Geochemistry, Geophysics, Geosystems, 2015,16(9):2 994-3 014. [42] HUNG P, MONTEYS X, SCOTT G, et al. The use of multibeam backscatter angular response for marine sediment characterization by comparison with shallow electromagnetic conductivity[J]. Applied Acoustics, 2016,112:181-191. [43] GALLAUDET T C, MOUSTIER C P. Multibeam volume acoustic backscatter imagery and reverberation measurements in the northeastern Gulf of Mexico[J]. The Journal of the Acoustical Society of America, 2002,112(2):489-503. [44] EASON D E, DUNN R A, CANALES J P, et al. Segment-scale variations in seafloor volcanic and tectonic processes from multibeam sonar imaging, Mid-Atlantic Ridge Rainbow region (35°45′-36°35′N) [J]. Geochemistry, Geophysics, Geosystems, 2016,17(9):3 560-3 579. [45] ZHAO Jian-hu, LIU Jing-nan. Multi-beam bathymetry and image data processing[M]. Wuhan: Wuhan University Press,2008:1-374. 赵建虎,刘经南.多波束测深及图像数据处理[M]. 武汉:武汉大学出版社,2008:1-374. [46] RONA P A, MURTON B J, BOSTROM K, et al. Carslberg Ridge and Mid-Atlantic Ridge: Slow-spreading Apparent Analogs[C]. AGU Fall Meeting Abstracts. 2005:1 455. [47] MORGAN J P, PARMENTIER E M, LIN J, et al. Mechanisms for the origin of mid-ocean ridge axial topography: Implications for the thermal and mechanical structure of accreting plate boundaries[J]. Journal of Geophysical Research, 1987,92(B12):12 823-12 836. [48] CHEN Yong-shun, MORGAN W J. A nonlinear rheology model for mid-ocean ridge axis topography[J]. Journal of Geophysical Research: Solid Earth, 1990,95(B11):17 583-17 604. [49] HOOFT E E E, DETRICK R S. Relationship between axial morphology, crustal thickness, and mantle temperature along the Juan de Fuca and Gorda Ridges[J]. Journal of Geophysical Research: Solid Earth, 1995,100(B11):22 499-22 508. [50] YEO I. Axial volcanic ridges[M]//HARFF J, MESCHEDE M, PETERSEN S, et al. Encyclopedia of marine geosciences, 2014:36-39. [51] SPENCER S, SMITH D K, CANN J R, et al. Structure and stability of non-transform discontinuities on the Mid Atlantic Ridge between 24°N and 30°N[J]. Marine Geophysical Research, 1997,19:339-362. [52] PARSON L, GRACIA E, COLLER D, et al. Second-order segmentation; the relationship between volcanism and tectonism at the MAR, 38°N-35°40′N[J]. Earth and Planetary Science Letters, 2000,178:231-251. [53] WHITE S M, MASON J L, MACDONALD K C, et al. Significance of widespread low effusion rate eruptions over the past two million years for delivery of magma to the overlapping spreading centers at 9°N East Pacific Rise[J]. Earth and Planetary Science Letters, 2009,280:175-184. [54] COLMAN A, SINTON J M, WHITE S M, et al. Effects of variable magma supply on mid-ocean ridge eruptions: Constraints from mapped lava flow fields along the Galapagos Spreading Center[J]. Geochemistry, Geophysics, Geosystems, 2012,13(8):1-28. [55] BONATTI E, HARRISON C G A. Eruption styles of basalts in oceanic spreading ridges and seamounts: Effect of magma temperature and viscosity[J]. Journal of Geophysical Research,1988, 93(B4):2 967-2 980. [56] GREGG T K P, FINK J H. Quantification of submarine lava-flow morphology through analog experiments[J]. Geology, 1995,23(1):73-76. [57] LANGMUIR C H, HAMELIN C, CHEN Z, et al. Do ridge segments with asymmetric and symmetric spreading have distinctive geochemical signatures[C]?AGU Fall Meeting Abstracts, 2013:1. [58] SEARLE R C, COWIE P A, MITCHELL N C, et al. Fault structure and detailed evolution of a slow spreading ridge segment: The Mid-Atlantic Ridge at 29°N [J]. Earth and Planetary Science Letters, 1998,154(1):167-183. [59] ALLERTON S, ESCARTÍN J, SEARLE R C. Extremely asymmetric magmatic accretion of oceanic crust at the ends of slow-spreading ridge segments[J]. Geology, 2000, 28(2):179-182. [60] ALLERTON S, MURTON B J, SEARLE R C, et al. Extensional faulting and segmentation of the Mid-Atlantic Ridge north of the Kane Fracture Zone (24° 00′ N to 24° 40′ N)[J]. Marine Geophysical Research, 1995, 17(1):37-61. |