海洋学研究 ›› 2023, Vol. 41 ›› Issue (1): 3-13.DOI: 10.3969-j.issn.1001-909X.2023.01.001
收稿日期:
2022-10-30
修回日期:
2023-01-25
出版日期:
2023-03-15
发布日期:
2023-04-28
通讯作者:
陈鹭真(1977—),女,教授,主要从事全球变化背景下的滨海湿地蓝碳方面的研究,E-mail:作者简介:
陈一宁(1979—),女,浙江省温州市人,研究员,主要从事滨海湿地生物地貌学方面的研究,E-mail:yiningchen@sio.org.cn。
基金资助:
CHEN Yining1,2(), CHEN Luzhen3,4,*()
Received:
2022-10-30
Revised:
2023-01-25
Online:
2023-03-15
Published:
2023-04-28
摘要:
红树林、滨海盐沼和海草床是典型的滨海蓝碳生态系统,具有相当可观的固碳能力。植被碳库和沉积物碳库是蓝碳生态系统有机碳的主要载体,其变化过程决定了生态系统的整体固碳能力。本文尝试从碳库相互作用的角度出发,通过文献梳理,总结不同植被碳库之间、不同沉积物碳库之间以及植被碳库和沉积物碳库之间相互作用的研究进展,指出物种竞争、外源碳输入以及生物地貌学过程在碳库相互作用中所起到的重要作用,并提出滨海蓝碳生态系统碳库研究中存在的问题和未来研究的方向。
中图分类号:
陈一宁, 陈鹭真. 滨海蓝碳生态系统的碳库间相互作用研究进展及展望[J]. 海洋学研究, 2023, 41(1): 3-13.
CHEN Yining, CHEN Luzhen. Interactions between vegetation and sediment carbon pools within coastal blue carbon ecosystems: A review and perspective[J]. Journal of Marine Sciences, 2023, 41(1): 3-13.
图2 沉积物碳库间、植被碳库-沉积物碳库之间的相互作用示意图
Fig.2 Schematic diagram for interactions within sediment carbon pools and the interaction between vegetation and sediment carbon pools
[1] | NELLEMANN C, CORCORAN E, DUARTE C M, et al. Blue carbon: The role of healthy oceans in binding carbon: A rapid response assessment[M]. Norway: Birkeland Trykkeri AS, 2009. |
[2] | MACREADIE P I, COSTA M D P, ATWOOD T B, et al. Blue carbon as a natural climate solution[J]. Nature Reviews Earth & Environment, 2021, 2(12): 826-839. |
[3] |
PENDLETON L, DONATO D C, MURRAY B C, et al. Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems[J]. PLoS ONE, 2012, 7(9): e43542.
DOI URL |
[4] | HOWARD J, HOYT S, ISENSEE K, et al. Coastal blue carbon:Methods for assessing carbon stocks and emissions factors in mangroves, tidal salt marshes, and seagrasses[M]. Arlington: Conservational International, Intergovernmental Oceanographic Commission of UNESCO, International Union for Conservation of Nature, 2014. |
[5] | 陈鹭真, 卢伟志, 林光辉. 滨海蓝碳:红树林盐沼海草床碳储量和碳排放因子评估方法[M]. 厦门: 厦门大学出版社, 2018:189. |
CHEN L Z, LU W Z, LIN G H. Coastal blue carbon: Methods for assessing carbon stocks and emissions factors in mangroves, tidal salt marshes, and seagrass meadows[M]. Xiamen: Xiamen University Press, 2018: 189. | |
[6] |
MIDDELBURG J J, NIEUWENHUIZE J, LUBBERTS R K, et al. Organic carbon isotope systematics of coastal marshes[J]. Estuarine, Coastal and Shelf Science, 1997, 45(5):681-687.
DOI URL |
[7] |
MIDDLETON B A, MCKEE K L. Degradation of mangrove tissues and implications for peat formation in Belizean island forests[J]. Journal of Ecology, 2001, 89(5): 818-828.
DOI URL |
[8] | KENNEDY H, BEGGINS J, DUARTE C M, et al. Seagrass sediments as a global carbon sink: Isotopic constraints[J]. Global Biogeochemical Cycles, 2010, 24(4): GB4026. |
[9] | CHMURA G L, ANISFELD S C, CAHOON D R, et al. Global carbon sequestration in tidal, saline wetland soils[J]. Global Biogeochemical Cycles, 2003, 17(4): 1111. |
[10] |
DUARTE C M, MIDDELBURG J J, CARACO N. Major role of marine vegetation on the oceanic carbon cycle[J]. Biogeosciences, 2005, 2(1): 1-8.
DOI URL |
[11] | WANG F M, SANDERS C J, SANTOS I R, et al. Global blue carbon accumulation in tidal wetlands increases with climate change[J]. National Science Review, 2021, 8(9): nwaa296. |
[12] | CHEN L Z, CHEN Y N, ZHANG Y H, et al. Mangrove carbon sequestration and sediment deposition changes under cordgrass invasion[M]//Dynamic sedimentary environments of mangrove coasts. Amsterdam: Elsevier, 2021: 473-509. |
[13] |
DONATO D C, KAUFFMAN J B, MURDIYARSO D, et al. Mangroves among the most carbon-rich forests in the tropics[J]. Nature Geoscience, 2011, 4(5): 293-297.
DOI |
[14] | 林鹏. 中国红树林生态系[M]. 北京: 科学出版社, 1997:85-91. |
LIN P. Mangrove ecosystem in China[M]. Beijing: Science Press, 1997: 85-91. | |
[15] |
ROVAI A S, TWILLEY R R, CASTAÑEDA-MOYA E, et al. Global controls on carbon storage in mangrove soils[J]. Nature Climate Change, 2018, 8(6): 534-538.
DOI |
[16] |
FU C C, LI Y, ZENG L, et al. Stocks and losses of soil organic carbon from Chinese vegetated coastal habitats[J]. Global Change Biology, 2021, 27(1): 202-214.
DOI URL |
[17] | DUARTE C M, MARBÀ N, GACIA E, et al. Seagrass community metabolism: Assessing the carbon sink capacity of seagrass meadows[J]. Global Biogeochemical Cycles, 2010, 24(4): GB4032. |
[18] |
FOURQUREAN J W, DUARTE C M, KENNEDY H, et al. Seagrass ecosystems as a globally significant carbon stock[J]. Nature Geoscience, 2012, 5(7): 505-509.
DOI |
[19] |
KELLEWAY J J, CAVANAUGH K, ROGERS K, et al. Review of the ecosystem service implications of mangrove encroachment into salt marshes[J]. Global Change Biology, 2017, 23(10): 3967-3983.
DOI PMID |
[20] |
LIU W W, CHEN X C, STRONG D R, et al. Climate and geographic adaptation drive latitudinal clines in biomass of a widespread saltmarsh plant in its native and introduced ranges[J]. Limnology and Oceanography, 2020, 65(6):1399-1409.
DOI URL |
[21] |
KELLEWAY J J, SAINTILAN N, MACREADIE P I, et al. Seventy years of continuous encroachment substantially increases 'blue carbon' capacity as mangroves replace intertidal salt marshes[J]. Global Change Biology, 2016, 22(3): 1097-1109.
DOI PMID |
[22] |
YANDO E S, OSLAND M J, WILLIS J M, et al. Salt marsh-mangrove ecotones:Using structural gradients to investigate the effects of woody plant encroachment on plant-soil interactions and ecosystem carbon pools[J]. Journal of Ecology, 2016, 104(4): 1020-1031.
DOI URL |
[23] | ZHAO L X, ZHANG K, SITEUR K, et al. Fairy circles reveal the resilience of self-organized salt marshes[J]. Science Advances, 2021, 7(6): eabe1100. |
[24] |
MORRIS J T, SUNDARESHWAR P V, NIETCH C T, et al. Responses of coastal wetlands to rising sea level[J]. Ecology, 2002, 83(10): 2869-2877.
DOI URL |
[25] |
PENG D, CHEN L Z, PENNINGS S C, et al. Using a marsh organ to predict future plant communities in a Chinese estuary invaded by an exotic grass and mangrove[J]. Limnology and Oceanography, 2018, 63(6):2595-2605.
DOI URL |
[26] |
ZUO P, ZHAO S H, LIU C A, et al. Distribution of Spartina spp. along China’s coast[J]. Ecological Engineering, 2012, 40: 160-166.
DOI URL |
[27] |
LIU M, MAOD H, WANG Z M, et al. Rapid invasion of Spartina alterniflora in the coastal zone of mainland China: New observations from landsat OLI images[J]. Remote Sensing, 2018, 10(12): 1933.
DOI URL |
[28] |
LIU J E, HAN R M, SU H R, et al. Effects of exotic Spartina alterniflora on vertical soil organic carbon distribution and storage amount in coastal salt marshes in Jiangsu, China[J]. Ecological Engineering, 2017, 106: 132-139.
DOI URL |
[29] | 刘钰, 李秀珍, 闫中正, 等. 长江口九段沙盐沼湿地芦苇和互花米草生物量及碳储量[J]. 应用生态学报, 2013, 24(8):2129-2134. |
LIU Y, LI X Z, YAN Z Z, et al. Biomass and carbon storage of Phragmites australis and Spartina alterniflora in Jiuduan Shoal Wetland of Yangtze Estuary, East China[J]. Chinese Journal of Applied Ecology, 2013, 24(8):2129-2134. | |
[30] |
TAILLARDAT P, FRIESS D A, LUPASCU M. Mangrove blue carbon strategies for climate change mitigation are most effective at the national scale[J]. Biology Letters, 2018, 14(10): 20180251.
DOI URL |
[31] |
DARBY F A, TURNER R E. Below- and aboveground Spartina alterniflora production in a Louisiana salt marsh[J]. Estuaries and Coasts, 2008, 31(1): 223-231.
DOI URL |
[32] |
CHEN Y N, THOMPSON C, COLLINS M. Controls on creek margin stability by the root systems of saltmarsh vegetation, Beaulieu Estuary, Southern England[J]. Anthropocene Coasts, 2019, 2(1): 21-38.
DOI URL |
[33] | KAUFFMAN J B, DONATO D C. Protocols for the measurement, monitoring and reporting of structure, biomass and carbon stocks in mangrove forests[M]. Bogor, Indonesia: Cifor, 2012. |
[34] | JOHNSON B J, LOVELOCK C E, HERR D. Climate regulation: Salt marshes and blue carbon[M]//The Wetland Book. Dordrecht: Springer, 2016: 1185-1196. |
[35] |
OUYANG X G, LEE S Y. Improved estimates on global carbon stock and carbon pools in tidal wetlands[J]. Nature Communications, 2020, 11(1):317.
DOI PMID |
[36] |
BURDIGE D J. Preservation of organic matter in marine sediments:Controls, mechanisms, and an imbalance in sediment organic carbon budgets?[J]. Chemical Reviews, 2007, 107(2): 467-485.
DOI URL |
[37] |
ALLEN J R L. Morphodynamics of Holocene salt marshes: A review sketch from the Atlantic and Southern North Sea coasts of Europe[J]. Quaternary Science Reviews, 2000, 19(12): 1155-1231.
DOI URL |
[38] |
BOUILLON S, DAHDOUH-GUEBAS F, RAO A S, et al. Sources of organic carbon in mangrove sediments: Variability and possible ecological implications[J]. Hydrobiologia, 2003, 495(1): 33-39.
DOI URL |
[39] |
WELTJE G J. End-member modeling of compositional data: Numerical-statistical algorithms for solving the explicit mixing problem[J]. Mathematical Geology, 1997, 29(4):503-549.
DOI URL |
[40] | 高抒. 海洋沉积动力学研究导引[M]. 南京: 南京大学出版社, 2013:398. |
GAO S. Introduction to marine sedimentary dynamics research[M]. Nanjing: Nanjing University Press, 2013: 398. | |
[41] |
TUE N T, NGOC N T, QUY T D, et al. A cross-system analysis of sedimentary organic carbon in the mangrove ecosystems of Xuan Thuy National Park, Vietnam[J]. Journal of Sea Research, 2012, 67(1): 69-76.
DOI URL |
[42] | 曹磊, 宋金明, 李学刚, 等. 滨海盐沼湿地有机碳的沉积与埋藏研究进展[J]. 应用生态学报, 2013, 24(7):2040-2048. |
CAO L, SONG J M, LI X G, et al. Deposition and burial of organic carbon in coastal salt marsh: Research progress[J]. Chinese Journal of Applied Ecology, 2013, 24(7):2040-2048. | |
[43] | 高建华, 杨桂山, 欧维新. 苏北潮滩湿地不同生态带有机质来源辨析与定量估算[J]. 环境科学, 2005, 26(6):51-56. |
GAO J H, YANG G H, OU W X. Analysizing and quantitatively evaluating the organic matter source at different ecologic zones of tidal salt marsh, North Jiangsu Province[J]. Environmental Science, 2005, 26(6):51-56. | |
[44] | 夏添, 陈一宁, 高建华, 等. 植被演替对杭州湾南岸盐沼物质循环的影响[J]. 海洋科学, 2019, 43(10):35-42. |
XIA T, CHEN Y N, GAO J H, et al. Impact of vegetation succession on salt marsh material circulation in Southern Hangzhou Bay[J]. Marine Sciences, 2019, 43(10):35-42. | |
[45] |
DANG N Y T, MIR K A, KWON B O, et al. Sources and sequestration rate of organic carbon in sediments of the bare tidal flat ecosystems: A model approach[J]. Marine Environmental Research, 2023, 185: 105876.
DOI URL |
[46] | 钱跃东, 王勤耕. 针对大尺度区域的大气环境容量综合估算方法[J]. 中国环境科学, 2011, 31(3):504-509. |
QIAN Y D, WANG Q G. An integrated method of atmospheric environmental capacity estimation for large-scale region[J]. China Environment Science, 2011, 31(3): 504-509. | |
[47] | 赵美训, 张正斌. 箱式模型及其在计算碳循环上的应用[J]. 海洋通报, 1985, 4(1):78-87. |
ZHAO M X, ZHANG Z B. The box model and its application to the calculation of the carbon cycle[J]. Marine Science Bulletin, 1985, 4(1): 78-87. | |
[48] |
ANDRÉN O, KÄTTERER T. ICBM:The introductory carbon balance model for exploration of soil carbon balances[J]. Ecological Applications, 1997, 7(4): 1226-1236.
DOI URL |
[49] |
DANG N Y T, PARK H S, MIR K A, et al. Greenhouse gas emission model for tidal flats in the Republic of Korea[J]. Journal of Marine Science and Engineering, 2021, 9(11): 1181.
DOI URL |
[50] |
MILLIMAN J D, SYVITSKI J P M. Geomorphic/tectonic control of sediment discharge to the ocean: The importance of small mountainous rivers[J]. The Journal of Geology, 1992, 100(5): 525-544.
DOI URL |
[51] | MILLIMAN J D, FARNSWORTH K L. River discharge to the coastal ocean: a global synthesis[M]. Cambridge: Cambridge University Press, 2011. |
[52] | 王启栋, 宋金明, 李学刚. 黄河口湿地有机碳来源及其对碳埋藏提升策略的启示[J]. 生态学报, 2015, 35(2):568-576. |
WANG Q D, SONG J M, LI X G. Sources of organic carbon in the wetlands of the Yellow River Estuary and instructions on carbon burial promotion strategies[J]. Acta Ecologica Sinica, 2015, 35(2): 568-576. | |
[53] | CHEN J, WANG D Q, LI Y J, et al. The carbon stock and sequestration rate in tidal flats from coastal China[J]. Global Biogeochemical Cycles, 2020, 34(11): e2020GB006772. |
[54] | 刘敏, 侯立军, 许世远, 等. 长江口潮滩有机质来源的C、N稳定同位素示踪[J]. 地理学报, 2004, 59(6):918-926. |
LIU M, HOU L J, XU S Y, et al. Carbon and nitrogen stable isotopes as tracers to source organic matter in the Yangtze Estuary[J]. Acta Geographica Sinica, 2004, 59(6): 918-926.
DOI |
|
[55] | 田皓文. 长江口湿地沉积物生物标志物特征及其碳库来源指示意义[D]. 上海: 华东师范大学, 2022. |
TIAN H W. Characteristics of Biomarkers in wetland sediments of Yangtze Estuary and their significance in indicating the source of carbon pool[D]. Shanghai: East China Normal University, 2022. | |
[56] | 黄海军, 李凡, 张秀荣. 长江、 黄河水沙特征初步对比分析[M]. 北京: 海洋出版社, 2001:36-49. |
HUANGH J, LI F, ZHANG X R. Preliminary comparative analysis of water and sediment characteristics of the Yangtze River and the Yellow River[M]. Beijing: China Ocean Press, 2001: 36-49. | |
[57] |
CHEN Y N, CHEN N W, LI Y, et al. Multi-timescale sediment responses across a human impacted river-estuary system[J]. Journal of Hydrology, 2018, 560: 160-172.
DOI URL |
[58] |
CHEN Y N, LI Y, CAI T L, et al. A comparison of biohydrodynamic interaction within mangrove and saltmarsh boundaries[J]. Earth Surface Processes and Landforms, 2016, 41(13): 1967-1979.
DOI URL |
[59] | CHANG Y, CHEN Y N, LI Y. Flow modification associated with mangrove trees in a macro-tidal flat, Southern China[J]. Acta Oceanologica Sinica, 2019, 38(2): 1-10. |
[60] |
LIU B, CHEN Y N, CAI T L, et al. Estimating waves and currents at the saltmarsh edge using Acoustic Doppler Velocimeter data[J]. Frontiers in Marine Science, 2021, 8: 708116.
DOI URL |
[61] |
CHEN Y N, LI Y, THOMPSON C, et al. Differential sediment trapping abilities of mangrove and saltmarsh vegetation in a subtropical estuary[J]. Geomorphology, 2018, 318: 270-282.
DOI URL |
[62] |
ROGERS K, KELLEWAY J J, SAINTILAN N, et al. Wetland carbon storage controlled by millennial-scale variation in relative sea-level rise[J]. Nature, 2019, 567(7746): 91-95.
DOI |
[63] | 陈一宁, 陈鹭真, 蔡廷禄, 等. 滨海湿地生物地貌学进展及在生态修复中的应用展望[J]. 海洋与湖沼, 2020, 51(5):1055-1065. |
CHEN Y N, CHEN L Z, CAI T L, et al. Advances in biogeomorphology in coastal wetlands and its application in ecological restoration[J]. Oceanologia et Limnologia Sinica, 2020, 51(5): 1055-1065. | |
[64] |
FONSECA M S, FISHER J S. A comparison of canopy friction and sediment movement between four species of seagrass with reference to their ecology and restoration[J]. Marine Ecology Progress Series, 1986, 29: 15-22.
DOI URL |
[65] |
BOUMA T J, VAN DUREN L A, TEMMERMAN S, et al. Spatial flow and sedimentation patterns within patches of epibenthic structures: Combining field, flume and modelling experiments[J]. Continental Shelf Research, 2007, 27(8): 1020-1045.
DOI URL |
[66] |
NEUMEIER U. Velocity and turbulence variations at the edge of saltmarshes[J]. Continental Shelf Research, 2007, 27(8): 1046-1059.
DOI URL |
[67] |
HORSTMAN E M, DOHMEN-JANSSEN C M, HULSCHER S J M H. Flow routing in mangrove forests: A field study in Trang Province, Thailand[J]. Continental Shelf Research, 2013, 71: 52-67.
DOI URL |
[68] |
MAZDA Y, KOBASHI D, OKADA S. Tidal-scale hydrody-namics within mangrove swamps[J]. Wetlands Ecology and Management, 2005, 13(6): 647-655.
DOI URL |
[69] |
NEPF H M. Flow and transport in regions with aquatic vegetation[J]. Annual Review of Fluid Mechanics, 2012, 44: 123-142.
DOI URL |
[70] |
MOSSA M, BEN MEFTAH M, DE SERIO F, et al. How vegetation in flows modifies the turbulent mixing and spreading of jets[J]. Scientific Reports, 2017, 7(1): 6587.
DOI PMID |
[71] |
FAGHERAZZI S. Storm-proofing with marshes[J]. Nature Geoscience, 2014, 7(10): 701-702.
DOI |
[72] |
MÖLLER I, KUDELLA M, RUPPRECHT F, et al. Wave attenuation over coastal salt marshes under storm surge conditions[J]. Nature Geoscience, 2014, 7(10): 727-731.
DOI |
[73] |
NARAYAN S, BECK M W, WILSON P, et al. The value of coastal wetlands for flood damage reduction in the nor-theastern USA[J]. Scientific Reports, 2017, 7(1): 9463.
DOI |
[74] |
PAQUIER A E, HADDAD J, LAWLER S, et al. Quantifi-cation of the attenuation of storm surge components by a coastal wetland of the US mid Atlantic[J]. Estuaries and Coasts, 2017, 40(4): 930-946.
DOI URL |
[75] |
NEUMEIER U, AMOS C L. The influence of vegetation on turbulence and flow velocities in European salt-marshes[J]. Sedimentology, 2006, 53(2): 259-277.
DOI URL |
[76] | RUPPRECHT F, MÖLLER I, EVANS B, et al. Biophysical properties of salt marsh canopies—Quantifying plant stem flexibility and above ground biomass[J]. Coastal Engi-neering, 2015, 100: 48-57. |
[77] | 王爱军, 高抒, 贾建军, 等. 江苏王港盐沼的现代沉积速率[J]. 地理学报, 2005, 60(1):61-70. |
WANG A J, GAO S, JIA J J, et al. Contemporary sedimentation rates on salt marshes at Wanggang, Jiangsu, China[J]. Acta Geographica Sinica, 2005, 60(1): 61-70.
DOI |
|
[78] |
LOVELOCK C E, CAHOON D R, FRIESS D A, et al. The vulnerability of Indo-Pacific mangrove forests to sea-level rise[J]. Nature, 2015, 526(7574): 559-563.
DOI |
[79] |
VAN DE BROEK M, VANDENDRIESSCHE C, POPPEL-MONDE D, et al. Long-term organic carbon sequestration in tidal marsh sediments is dominated by old-aged allochthonous inputs in a macrotidal estuary[J]. Global Change Biology, 2018, 24(6): 2498-2512.
DOI PMID |
[80] |
KRAUSS K W, MCKEE K L, LOVELOCK C E, et al. How mangrove forests adjust to rising sea level[J]. The New Phytologist, 2014, 202(1): 19-34.
DOI URL |
[81] | 陈鹭真, 杨振昌, 林光辉. 全球变化下的中国红树林[M]. 厦门: 厦门大学出版社, 2021:251. |
CHEN L Z, YANG Z C, LIN G H. Mangroves in China under global change[M]. Xiamen: Xiamen University Press, 2021: 251. | |
[82] |
CHEN S, CHEN B, CHEN G, et al. Higher soil organic carbon sequestration potential at a rehabilitated mangrove comprised of Aegiceras corniculatum compared to Kandelia obovata[J]. Science of the Total Environment, 2021, 752:142279.
DOI URL |
[83] |
BROOKS H, MÖLLER I, CARR S, et al. Resistance of salt marsh substrates to near-instantaneous hydrodynamic forcing[J]. Earth Surface Processes and Landforms, 2021, 46(1): 67-88.
DOI URL |
[84] |
SÁNCHEZ J M, OTERO X L, IZCO J. Relationships between vegetation and environmental characteristics in a salt-marsh system on the coast of Northwest Spain[J]. Plant Ecology, 1998, 136(1): 1-8.
DOI URL |
[85] |
EWANCHUK P J, BERTNESS M D. The role of water-logging in maintaining forb pannes in northern New England salt marshes[J]. Ecology, 2004, 85(6):1568-1574.
DOI URL |
[86] | 陈鹭真, 王文卿, 林鹏. 潮汐淹水时间对秋茄幼苗生长的影响[J]. 海洋学报(中文版), 2005, 27(2):141-147. |
CHEN L Z, WANG W Q, LIN P. Influence of waterlogging time on the growth of Kandelia candel seedlings[J]. Acta Oceanologica Sinica (Chinese Version), 2005, 27(2):141-147. | |
[87] | 肖强, 郑海雷, 叶文景, 等. 水淹对互花米草生长及生理的影响[J]. 生态学杂志, 2005, 24(9):1025-1028. |
XIAO Q, ZHENG H L, YE W J, et al. Effects of waterlogging on growth and physiology of Spartina alterniflora[J]. Chinese Journal of Ecology, 2005, 24(9): 1025-1028. | |
[88] |
DENG Z F, AN S Q, ZHAO C J, et al. Sediment burial stimulates the growth and propagule production of Spartina alterniflora Loisel[J]. Estuarine, Coastal and Shelf Science, 2008, 76(4): 818-826.
DOI URL |
[89] |
SUN Z G, MOU X J, LIN G H, et al. Effects of sediment burial disturbance on seedling survival and growth of Suaeda salsa in the tidal wetland of the Yellow River Estuary[J]. Plant and Soil, 2010, 337(1): 457-468.
DOI URL |
[90] |
CAO H B, ZHU Z C, BALKE T, et al. Effects of sediment disturbance regimes on Spartina seedling establishment: Implications for salt marsh creation and restoration[J]. Limnology and Oceanography, 2018, 63(2): 647-659.
DOI URL |
[91] |
KIRWAN M L, MEGONIGAL J P. Tidal wetland stability in the face of human impacts and sea-level rise[J]. Nature, 2013, 504(7478): 53-60.
DOI |
[92] |
MARIOTTI G, CARR J. Dual role of salt marsh retreat: Long-term loss and short-term resilience[J]. Water Resources Research, 2014, 50(4): 2963-2974.
DOI URL |
[93] |
CHEN L Z, WANG W Q, ZHANG Y H, et al. Recent progresses in mangrove conservation, restoration and research in China[J]. Journal of Plant Ecology, 2009, 2(2): 45-54.
DOI URL |
[94] |
陈权, 马克明. 红树林生物入侵研究概况与趋势[J]. 植物生态学报, 2015, 39(3):283-299.
DOI |
CHEN Q, MA K M. Research overview and trend on biological invasion in mangrove forests[J]. Chinese Journal of Plant Ecology, 2015, 39(3): 283-299.
DOI |
|
[95] |
SMITH S V. Marine macrophytes as a global carbon sink[J]. Science, 1981, 211(4484): 838-840.
DOI PMID |
[96] | BOYSEN-JENSEN P, STATION C D B. Organic matter of the sea bottom[J]. The Journal of Ecology, 1915, 3(3): 182. |
[97] | 阮美娜, 李炎, 陈一宁, 等. 夏季台湾海峡的悬浮颗粒通道:现场粒度端元分析的证据[J]. 科学通报, 2012, 57(36):3522-3532. |
RUAN M N, LI Y, CHEN Y N, et al. Summer pathways for suspended particles across the Taiwan Strait: Evidence from the end-member analysis of in-situ particle size[J]. Chinese Science Bulletin, 2012, 57(36): 3522-3532. | |
[98] | 薛成凤, 贾建军, 高抒, 等. 中小河流对长江水下三角洲远端泥沉积的贡献:以椒江和瓯江为例[J]. 海洋学报, 2018, 40(5):75-89. |
XUE C F, JIA J J, GAO S, et al. The contribution of middle and small rivers to the distal mud of subaqueous Changjiang Delta: Results from Jiaojiang River and Oujiang River[J]. Haiyang Xuebao, 2018, 40(5): 75-89. | |
[99] | 杨守业, 韦刚健, 石学法. 地球化学方法示踪东亚大陆边缘源汇沉积过程与环境演变[J]. 矿物岩石地球化学通报, 2015, 34(5):902-910,884. |
YANG S Y, WEI G J, SHI X F. Geochemical approaches of tracing source-to-sink sediment processes and environmental changes at the east Asian continental margin[J]. Bulletin of Mineralogy, Petrology and Geochemistry. 2015, 34(5): 902-910, 884. | |
[100] | MURRAY A B, KNAAPEN M A F, TAL M, et al. Biomorphodynamics: Physical-biological feedbacks that shape landscapes[J]. Water Resources Research, 2008, 44(11): W11301. |
[101] |
TEMMINK R J M, LAMERS L P M, ANGELINI C, et al. Recovering wetland biogeomorphic feedbacks to restore the world’s biotic carbon hotspots[J]. Science, 2022, 376(6593): eabn1479.
DOI URL |
[102] | 刘秀娟, 高抒, 汪亚平. 淤长型潮滩剖面形态演变模拟:以江苏中部海岸为例[J]. 地球科学(中国地质大学学报), 2010, 35(4):542-550. |
LIU X J, GAO S, WANG Y P. Modeling the shore-normal profile shape evolution for an accretional tidal flat on the central Jiangsu coast[J]. Earth Science, 2010, 35(4): 542-550. |
[1] | 伍良旭, 邹慧敏, 陈威, 许明海, 蔡厚才, 陈抒忆, 李香兰. 国家自然保护区海岛森林碳汇潜力评估及驱动因素分析[J]. 海洋学研究, 2023, 41(1): 96-109. |
[2] | 董迪, 黄华梅, 高晴, 陈绵润, 杨熙. 海岸带蓝碳生态系统保护空缺分析——以广东和广西为例[J]. 海洋学研究, 2023, 41(1): 110-120. |
[3] | 姚华波, 张朝晖, 金海燕, 陈建芳. 长江口和浙江近岸海域表层沉积物中颗粒磷的形态分布和影响因素[J]. 海洋学研究, 2022, 40(4): 73-81. |
[4] | 林俊川, 孔德明, 陈法锦, 黄超, . 北部湾沉积物记录的近千年以来气候环境变化[J]. 海洋学研究, 2022, 40(3): 49-61. |
[5] | 张丽, 杨秀梅, 金海燕, , 朱祖浩, 张秋丰, 戴鑫烽, 陈洁. 有机磷酸酯的污染特征、来源和生态风险:以南海北部湾表层沉积物为例[J]. 海洋学研究, 2022, 40(3): 99-108. |
[6] | 高抒. 长江口与东海陆架泥质沉积动力过程与环境效应:长期数据采集需求[J]. 海洋学研究, 2021, 39(4): 1-10. |
[7] | 张从伟, 瞿洪宝, 熊元凯, 韩孝辉, 龙根元, 仝长亮, . 三亚近岸海域表层沉积物微量元素地球化学特征[J]. 海洋学研究, 2021, 39(3): 72-83. |
[8] | 王苑如, 崔鸿鹏, 李继东, 孙栋, 王春生, 杨娟. 西太平洋多金属结核区表层沉积物细菌群落结构及其对沉积扰动的响应[J]. 海洋学研究, 2021, 39(2): 21-32. |
[9] | 单红仙, 魏志明, 张民生, 贾永刚. 探头尺寸对FFP确定海底沉积物性质影响的原位试验研究[J]. 海洋学研究, 2020, 38(3): 83-91. |
[10] | 邹亚荣, 刘建强, 梁超, 朱海天. 基于HY-1C卫星CZI数据的红树林长势遥感监测[J]. 海洋学研究, 2020, 38(1): 68-76. |
[11] | 孟凡盛, 倪建宇, 姚旭莹. 西太平洋马尔库斯-威克海山区沉积物中生物硅含量分布[J]. 海洋学研究, 2019, 37(4): 60-67. |
[12] | 陈文深, 于培松, 韩喜彬, 赵军, 潘建明. 南极罗斯海表层沉积物GDGTs含量分布及其环境意义[J]. 海洋学研究, 2019, 37(1): 30-39. |
[13] | 胡春迪, 张成扬, 陈大可, 杨清华. 盛夏北极边缘海冰与来年冬季NAO之联系[J]. 海洋学研究, 2018, 36(4): 8-16. |
[14] | 董炜峰, 张瑜, 戴桂香, 苏荣, 袁春伟, 刘志勇. 近40 a厦门海域表层沉积物重金属时空分布及综合生态风险评价[J]. 海洋学研究, 2018, 36(3): 89-95. |
[15] | 张雪薇, 韩震, 刘美君, 丁如一. 长江口南汇湿地植被的光谱吸收特征研究[J]. 海洋学研究, 2018, 36(2): 50-54. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||