海洋学研究 ›› 2023, Vol. 41 ›› Issue (1): 14-25.DOI: 10.3969-j.issn.1001-909X.2023.01.002
于雷1,2(), 李三忠1,2, 索艳慧1,2,*(), 王秀娟1,2
收稿日期:
2022-10-18
修回日期:
2023-01-28
出版日期:
2023-03-15
发布日期:
2023-04-28
通讯作者:
索艳慧(1987—),女,副教授,主要从事构造地质与海洋地质方面的研究,E-mail: 作者简介:
于雷(1990—),男,吉林省长春市人,主要从事沉积岩石学和流体-岩石相互作用研究,E-mail: prcyulei@hotmail.com。
基金资助:
YU Lei1,2(), LI Sanzhong1,2, SUO Yanhui1,2,*(), WANG Xiujuan1,2
Received:
2022-10-18
Revised:
2023-01-28
Online:
2023-03-15
Published:
2023-04-28
摘要:
海岸海洋接受大量来自陆源的碳物质和营养盐,涉及大量以碳为中心的相互作用,是重要的碳循环海域;同时,该区域也常发育具有良好圈闭条件的储-盖系统,具有明显的CO2储集潜力。该文以海岸海洋及其下发育的沉积盆地为研究对象,综述了碳物质在海岸海洋中的循环过程、CO2通量的影响因素和海岸海洋沉积盆地的储碳机理。从“双碳”角度,重点论述了海岸海洋在促进CO2负排放方面的意义、促进海洋负碳排放的潜在途径和在沉积盆地的储碳潜力及面临的问题。海岸海洋是重要的碳汇区域之一,高效率的微生物碳泵和碳酸盐碳泵是增强海岸海洋CO2负排放的核心过程;同时,海岸海洋沉积盆地中的储-盖系统,不但提供了额外的CO2封存空间,也保障了CO2封存的安全性。未来的研究应以抑制海岸海洋中碳物质向CO2转化的进程和保障沉积储层中CO2封存的安全性为主要方向,为CO2负排放提供理论依据与技术保障。
中图分类号:
于雷, 李三忠, 索艳慧, 王秀娟. 海岸海洋碳循环过程与CO2负排放[J]. 海洋学研究, 2023, 41(1): 14-25.
YU Lei, LI Sanzhong, SUO Yanhui, WANG Xiujuan. Carbon cycling in costal ocean and CO2 negative emissions[J]. Journal of Marine Sciences, 2023, 41(1): 14-25.
图1 海岸海洋中有机碳和无机碳通量的影响因素及碳循环过程 (图片修改自文献[10]。其中DOC、DIC、POC和hv分别代表溶解有机碳、溶解无机碳、颗粒有机碳和光子能量。)
Fig.1 Influencing factors of organic carbon and inorganic carbon fluxes and carbon cycle processes in coastal ocean (Figure was modified from reference[10]. DOC, DIC, POC and hv are dissolved organic carbon, dissolved inorganic carbon, particulate organic carbon and photon energy, respectively.)
图2 海岸海洋系统中潮汐湿地、河口和大陆架3个子系统中的有机碳和无机碳通量统计及其输送方向 (图片修改自文献[10]。OC为有机碳,IC为无机碳,红色数值代表海岸海洋系统与外部系统交换的碳通量,黑色数值代表海岸海洋系统内部交换的碳通量,箭头指示碳的输送方向,所有OC和IC通量均为正值。蓝色数值代表初级生产总量(GPP)和系统呼吸作用总量(RAH)之间的平衡量,即净生态系统生产力(NEP),负值表示OC转化为IC的碳通量。碳通量误差忽略不计。图中数值单位为Pg C·a-1。)
Fig.2 Statistic data of organic carbon and inorganic carbon fluxes in the three subsystems of tidal wetlands, estuarine and continental shelf in coastal marine system and their transport directions (Figure was modified from reference[10]. OC is organic carbon, IC is inorganic carbon. Red and black values are the carbon fluxes exchanged across and within the boundaries of the coastal ocean, with positive values. Arrows indicate the directions of the carbon matters transport. Blue values represent the balance between gross primary production (GPP) and total system respiration (RAH), i.e., net ecosystem production (NEP), with negative values indicating conversion of OC to IC. Carbon flux error is negligible. The unit is Pg C·a-1.)
图3 CO2年通量密度与海岸海洋所处纬度的关系(a);据文献数据汇编的CO2年通量密度与海岸海洋所处纬度的关系(b);距离世界范围内主要陆地50 km处的季节性和年平均ΔpCO2(c) (图片修改自文献[43],其中图a数据来自文献[20]。)
Fig.3 The relationship between annual CO2 flux density and the coastal ocean latitude(a); The relationship between annual CO2 flux density and coastal ocean latitude, compiled from the literatures(b); Seasonal and annual mean ΔpCO2 at 50 km from land(c) (Figure was modified from reference[43].The data of fig.a were from reference[20].)
图4 工业化前和现今大陆架的有机碳和无机碳通量、 pCO2水平以及生态系统净产量 (图片修改自文献[10]。图中有机碳和无机碳通量以及生态系统净产量的单位为Pg C·a-1。)
Fig.4 pCO2 levels, net ecosystem production (NEP), and organic and inorganic carbon fluxes on pre-industrial and current continental shelves (Figure was modified from reference[10]. The unit for organic carbon, inorganic carbon fluxes and NEP in this figure is Pg C·a-1.)
图5 1750—2011年CO2人为排放量(a)及CO2在大气、陆地和海洋中的吸收量(b) (图片修改自文献[48]。)
Fig.5 Anthropogenic CO2 emissions(a) and their absorptive amounts in the systems of atmosphere, land and ocean(b) from 1750 to 2011 (Figure was modified from refernce[48].)
图6 缺氧环境中以微生物和流体-岩石相互作用为媒介的海洋负碳排放(ONCE)过程 (图片修改自文献[21]。ONCE包括惰性溶解有机碳生产、碱度增强和碳酸盐矿物沉淀。)
Fig.6 Ocean carbon negative emission (ONCE) processes mediated by microbial and fluid-rock interactions in anoxic environments (Figure was modified from reference[21]. ONCE including refractory dissolved organic carbon production, alkalinity enhancement, and carbonate minerals precipitation.)
图7 超临界CO2注入沉积盆地后不同阶段CO2的主要封存机制及其存储安全性评价 (图片修改自文献[1]。)
Fig.7 Evaluation of CO2storage mechanism and storage safety at different stages after supercritical CO2 injection into sedimentary basins (Figure was modified from reference[1].)
[1] | IPCC. IPCC special report on carbon dioxide capture and storage[R]. Cambridge, United Kingdom and New York, NY, USA, 2005: 442. |
[2] | ALLAN R P, ACHUTARAO K M. Climate change 2021: the physical science basis: Working Group I contribution to the sixth assessment report of the Intergovernmental Panel on Climate Change[M]. Geneva, Switzerland: WMO, IPCC Secretariat, 2021. |
[3] |
OELKERS E H, GISLASON S R, MATTER J. Mineral carbonation of CO2[J]. Elements, 2008, 4(5): 333-337.
DOI URL |
[4] |
LACKNER K S, WENDT C H, BUTT D P, et al. Carbon dioxide disposal in carbonate minerals[J]. Energy, 1995, 20(11): 1153-1170.
DOI URL |
[5] | JOHNSON J W, NITAO J J, STEEFEL C I, et al. Reactive transport modeling of geologic CO2 sequestration in saline aquifers: The influence of intra-aquifer shales and the relative effectiveness of structural, solubility, and mineral trapping during prograde and retrograde sequestration[R]. Lawrence Livermore National Lab, CA (US), 2001. |
[6] |
MATTER J M, STUTE M, SNÆBJÖRNSDOTTIR S Ó, et al. Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions[J]. Science, 2016, 352(6291): 1312-1314.
DOI PMID |
[7] |
POWER I M, HARRISON A L, DIPPLE G M, et al. Carbon mineralization: From natural analogues to engineered systems[J]. Reviews in Mineralogy and Geochemistry, 2013, 77(1): 305-360.
DOI URL |
[8] |
COLE J J, PRAIRIE Y T, CARACO N F, et al. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget[J]. Ecosystems, 2007, 10(1): 172-185.
DOI URL |
[9] |
CAI W J. Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration?[J]. Annual Review of Marine Science, 2011, 3: 123-145.
DOI URL |
[10] |
BAUER J E, CAI W J, RAYMOND P A, et al. The changing carbon cycle of the coastal ocean[J]. Nature, 2013, 504(7478): 61-70.
DOI |
[11] |
GATTUSO J P, FRANKIGNOULLE M, WOLLAST R. Carbon and carbonate metabolism in coastal aquatic ecosys-tems[J]. Annual Review of Ecology and Systematics, 1998, 29: 405-434.
DOI URL |
[12] |
THOMAS H, BOZEC Y, ELKALAY K, et al. Enhanced open ocean storage of CO2 from shelf sea pumping[J]. Science, 2004, 304(5673): 1005-1008.
DOI URL |
[13] | 李三忠, 刘丽军, 索艳慧, 等. 碳构造:一个地球系统科学新范式[J]. 科学通报, 2023, 68(4):309-338. |
LI S Z, LIU L J, SUO Y H, et al. Carbon Tectonics: A new paradigm for earth system science[J]. Chinese Science Bulletin, 2023, 68(4): 309-338. | |
[14] |
BORGES A V. Do we have enough pieces of the jigsaw to integrate CO2 fluxes in the coastal ocean?[J]. Estuaries, 2005, 28(1): 3-27.
DOI URL |
[15] | CAI W J, DAI M H. Comment on “Enhanced open ocean storage of CO2 from shelf sea pumping”[J]. Science, 2004, 306(5701): 1477. |
[16] |
CAI W J, DAI M H, WANG Y C. Air-sea exchange of carbon dioxide in ocean margins: Aprovince-based synthesis[J]. Geophysical Research Letters, 2006, 33(12): L12603.
DOI URL |
[17] |
CHEN C T A, BORGES A V. Reconciling opposing views on carbon cycling in the coastal ocean: Continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2009, 56(8-10): 578-590.
DOI URL |
[18] |
DAI M H, CAO Z M, GUO X H, et al. Why are some marginal seas sources of atmospheric CO2?[J]. Geophysical Research Letters, 2013, 40(10): 2154-2158.
DOI URL |
[19] |
LARUELLE G G, LAUERWALD R, PFEIL B, et al. Regionalized global budget of the CO2 exchange at the air-water interface in continental shelf seas[J]. Global Biogeochemical Cycles, 2014, 28(11): 1199-1214.
DOI URL |
[20] | ROOBAERT A, LARUELLE G G, LANDSCHÜTZER P, et al. The spatiotemporal dynamics of the sources and sinks of CO2 in the global coastal ocean[J]. Global Biogeoche-mical Cycles, 2019, 33(12): 1693-1714. |
[21] |
JIAO N Z, LIU J H, JIAO F L, et al. Microbes mediated comprehensive carbon sequestration for negative emissions in the ocean[J]. National Science Review, 2020, 7(12): 1858-1860.
DOI PMID |
[22] | 姚冠荣, 高全洲. 河流碳输移与陆地侵蚀-沉积过程关系的研究进展[J]. 水科学进展, 2007, 18(1):133-139. |
YAO G R, GAO Q Z. Correlation between riverine carbon transport and terrestrial erosion-deposition processes[J]. Advances in Water Science, 2007, 18(1): 133-139. | |
[23] | SCHLESINGER W H. Biogeochemistry: An analysis of global change[M]. 2nd ed. San Diego, Calif: Academic Press, 1997. |
[24] |
TURNER R E, RABALAIS N N, SWENSON E M, et al. Summer hypoxia in the northern Gulf of Mexico and its prediction from 1978 to 1995[J]. Marine Environmental Research, 2005, 59(1): 65-77.
PMID |
[25] |
LOHRENZ S E, REDALJE D G, CAI W J, et al. A retrospective analysis of nutrients and phytoplankton productivity in the Mississippi River plume[J]. Continental Shelf Research, 2008, 28(12): 1466-1475.
DOI URL |
[26] |
COLE J J, CARACO N F. Carbon in catchments: Connecting terrestrial carbon losses with aquatic metabolism[J]. Marine and Freshwater Research, 2001, 52(1): 101-110.
DOI URL |
[27] |
RICHEY J E, MELACK J M, AUFDENKAMPE A K, et al. Outgassing from Amazonian Rivers and wetlands as a large tropical source of atmospheric CO2[J]. Nature, 2002, 416(6881): 617-620.
DOI |
[28] |
LUDWIG W, PROBST J, KEMPE S. Predicting the oceanic input of organic carbon by continental erosion[J]. Global Biogeochemical Cycles, 1996, 10(1): 23-41.
DOI URL |
[29] | WOODWELL G M, RICH P H, HALL C A S. Carbon and the estuaries[M] //WOODWEELLG, PECANE V. Carbon and the Biosphere. Springfield, Virginia: United States Atomic Energy Commission, 1973: 221-240. |
[30] | HOPKINSON C S Jr. Patterns of organic carbon exchange between coastal ecosystems the mass balance approach in salt marsh ecosystems[M] //JANSSONB O. Coastal-offshoreecosystem interactions, Volume 22. Washington, D. C.: American Geophysical Union, 1988: 122-154. |
[31] | DITTMAR T, HERTKORN N, KATTNER G, et al. Mangroves, a major source of dissolved organic carbon to the oceans[J]. Global Biogeochemical Cycles, 2006, 20(1): GB1012. |
[32] |
REGNIER P, FRIEDLINGSTEIN P, CIAIS P, et al. Anthropogenic perturbation of the carbon fluxes from land to ocean[J]. Nature Geoscience, 2013, 6(8): 597-607.
DOI |
[33] |
RAYMOND P A, CARACO N F, COLE J J. Carbon dioxide concentration and atmospheric flux in the Hudson River[J]. Estuaries, 1997, 20(2): 381-390.
DOI URL |
[34] |
CAI W J, WANG Y C. The chemistry, fluxes, and sources of carbon dioxide in the estuarine waters of the Satilla and Altamaha Rivers, Georgia[J]. Limnology and Oceanography, 1998, 43(4): 657-668.
DOI URL |
[35] |
FRANKIGNOULLE M, ABRIL G, BORGES A, et al. Carbon dioxide emission from Europeanestuaries[J]. Science, 1998, 282(5388): 434-436.
DOI URL |
[36] | BORGES A V, DELILLE B, FRANKIGNOULLE M. Budgeting sinks and sources of CO2 in the coastal ocean: Diversity of ecosystems counts[J]. Geophysical Research Letters, 2005, 32(14): L14601. |
[37] |
JANSSENS I A, FREIBAUER A, CIAIS P, et al. Europe’s terrestrial biosphere absorbs 7 to 12% of European anthropogenic CO2 emissions[J]. Science, 2003, 300(5625): 1538-1542.
DOI URL |
[38] | WOLANSKI E, MCLUSKY D. Treatise on estuarine and coastal science[M]. London: Academic Press, 2011. |
[39] | LARUELLE G G, DÜRR H H, SLOMP C P, et al. Evaluation of sinks and sources of CO2 in the global coastal ocean using a spatially-explicit typology of estuaries and continental shelves[J]. Geophysical Research Letters, 2010, 37(15): L15607. |
[40] |
LARUELLE G G, DÜRR H H, LAUERWALD R, et al. Global multi-scale segmentation of continental and coastal waters from the watersheds to the continental margins[J]. Hydrology and Earth System Sciences, 2013, 17(5): 2029-2051.
DOI URL |
[41] | MACKENZIE F, ANDERSSON A, LERMAN A, et al. Boundary exchanges in the global coastal margin: Implications for the organic and inorganic carbon cycles[M] //ROBINSON A R, BRINK K H. The sea: The global coastal ocean: Multiscale interdisciplinary processes. Cam-bridge, MA: Harvard University Press, 2005: 193-225. |
[42] | JAHNKE R A. Global synthesis[M] //LIUK K, ATKINSONL, QUIÑONESR, et al.Carbon and nutrient fluxes in continental margins. Berlin, Heidelberg: Springer, 2010: 597-615. |
[43] |
DAI M H, SU J Z, ZHAO Y Y, et al. Carbon fluxes in the coastal ocean: Synthesis, boundary processes, and future trends[J]. Annual Review of Earth and Planetary Sciences, 2022, 50: 593-626.
DOI URL |
[44] |
STALLARD R F. Terrestrial sedimentation and the carbon cycle: Coupling weathering and erosion to carbon burial[J]. Global Biogeochemical Cycles, 1998, 12(2): 231-257.
DOI URL |
[45] |
RAYMOND P A, OH N H, TURNER R E, et al. Anthropogenically enhanced fluxes of water and carbon from the Mississippi River[J]. Nature, 2008, 451(7177): 449-452.
DOI |
[46] |
MACKENZIE F T, LERMAN A, ANDERSSON A J. Past and present of sediment and carbon biogeochemical cycling models[J]. Biogeosciences, 2004, 1(1): 11-32.
DOI URL |
[47] |
SMITH S V, HOLLIBAUGH J T. Coastal metabolism and the oceanic organic carbon balance[J]. Reviews of Geophysics, 1993, 31(1): 75-89.
DOI URL |
[48] | IPCC. The physical science basis[R]. Cambridge, United Kingdom and New York, NY, USA: International Panel on Climate Change, 2013. |
[49] |
JIAO N Z, GUO Z T, LEGENDRE L, et al. Editorial for the special issue on marine carbon sequestration and climate change[J]. National Science Review, 2018, 5(4): 456-457.
DOI URL |
[50] | 刘光鼎, 陈洁. 中国海域残留盆地油气勘探潜力分析[J]. 地球物理学进展, 2005, 20(4):881-888. |
LIU G D, CHEN J. Potential analysis of petroleum explor-tation in residual basins of the China sea[J]. Progress in Geophysics, 2005, 20(4): 881-888. | |
[51] |
XU T F, APPS J A, PRUESS K. Numerical simulation of CO2 disposal by mineral trapping in deep aquifers[J]. Applied Geochemistry, 2004, 19(6): 917-936.
DOI URL |
[52] |
XU T F, APPS J A, PRUESS K. Mineral sequestration of carbon dioxide in a sandstone-shale system[J]. Chemical Geology, 2005, 217(3/4): 295-318.
DOI URL |
[53] |
XU T F, APPS J A, PRUESS K, et al. Numerical modeling of injection and mineral trapping of CO2 with H2S and SO2 in a sandstone formation[J]. Chemical Geology, 2007, 242(3/4): 319-346.
DOI URL |
[54] |
KEARNS J, TELETZKE G, PALMER J, et al. Developing a consistent database for regional geologic CO2 storage capacity worldwide[J]. Energy Procedia, 2017, 114: 4697-4709.
DOI URL |
[55] |
SCHRAG D P. Storage of carbon dioxide in offshore sediments[J]. Science, 2009, 325(5948): 1658-1659.
DOI PMID |
[56] |
BACHU S, BONIJOLY D, BRADSHAW J, et al. CO2 storage capacity estimation: Methodology and gaps[J]. International Journal of Greenhouse Gas Control, 2007, 1(4): 430-443.
DOI URL |
[57] | IEA. Energy technology perspectives 2020: Special report on carbon capture, utilisation and storage[R]. IEA, 2020. |
[58] | INSTITUTE G C. The global status of CCS: 2015, Summary report[M]. Melbourne, Australia: Global CCS Institute, 2015. |
[59] | ORCHARD K, SIMON R, DURUSUT E, et al. Value of emerging and enabling technologies in reducing costs, risks and timescales for CCS[C]//Proceedings of the 15th International Conference on Greenhouse Gas Control Technologies, 2021. |
[1] | 刘莉萍, 初凤友, 郭磊, 李小虎. 海底天然气水合物及冷泉流体渗漏的原位观测技术[J]. 海洋学研究, 2023, 41(1): 26-44. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||