海洋学研究 ›› 2023, Vol. 41 ›› Issue (1): 82-95.DOI: 10.3969-j.issn.1001-909X.2023.01.007

• 研究论文 • 上一篇    下一篇

高空间分辨率海表CO2分压的卫星遥感反演算法:机器学习在秋季象山港的应用

刘婷宇1(), 白雁1,2,*(), 朱伯仲1,2, 李腾1, 龚芳1   

  1. 1.自然资源部第二海洋研究所,浙江 杭州 310012
    2.浙江大学 海洋学院,浙江 舟山 316021
  • 收稿日期:2022-12-27 修回日期:2023-02-01 出版日期:2023-03-15 发布日期:2023-04-28
  • 通讯作者: 白雁(1979—),女,研究员,主要从事海洋碳循环遥感研究,E-mail:baiyan@sio.org.cn
  • 作者简介:刘婷宇(1999—),女,山东省烟台市人,主要从事海洋遥感研究,E-mail:liuty@sio.org.cn
  • 基金资助:
    浙江省“尖兵”“领雁”研发攻关计划项目(2023C03011);国家自然科学基金(42176177);国家自然科学基金(41825014)

Satellite retrieval algorithm of high spatial resolution sea surface partial pressure of CO2: Application of machine learning in Xiangshan Bay in autumn

LIU Tingyu1(), BAI Yan1,2,*(), ZHU Bozhong1,2, LI Teng1, GONG Fang1   

  1. 1. Second Institute of Oceanography, MNR, Hangzhou 310012, China
    2. Ocean College, Zhejiang University,Zhoushan 316021, China
  • Received:2022-12-27 Revised:2023-02-01 Online:2023-03-15 Published:2023-04-28

摘要:

近海海湾受人类活动及自然变化影响大,海水碳源汇格局变化影响机制极其复杂。由于海湾空间尺度小,需要使用宽波段的高空间分辨率卫星遥感对海-气CO2通量进行监测评估。相对于传统公里级的水色卫星资料,海-气CO2通量定量估算的关键参数——海表CO2分压(sea surface partial pressure of CO2, pCO2)遥感反演在小尺度海湾具有极大的挑战性。该文以秋季象山港为例,利用走航观测pCO2数据及近5年哨兵2号(Sentinel-2)卫星影像,采用支持向量机(support vector machine, SVM)机器学习的方法,基于Sentinel-2遥感反射率及其比值,建立了海表pCO2的遥感反演算法。算法验证结果显示决定系数为0.92,均方根误差为23.23 μatm,遥感反演结果与实测值具有较高一致性。在此基础上,制作了2017—2021年秋季(9—11月)象山港海表pCO2遥感产品,结果表明,象山港海表pCO2整体上呈现从湾顶向湾口递减的趋势,均值为514.56 μatm,其中,湾内pCO2均值为551.94 μatm,湾外pCO2均值为477.19 μatm,整体呈现为大气CO2的源,且5年间秋季pCO2没有显著趋势性变化。结合多参数走航实测数据分析发现,2021年象山港秋季海表pCO2受物理混合作用及生物活动的共同调控。海表温度(sea surface temperature, SST)与pCO2具有良好的正相关关系,且SST对pCO2的影响主要体现在碳酸盐热力学平衡作用上。此外,平均温度归一化的pCO2(NpCO2)与海水盐度和溶解氧饱和度均具有良好的负相关关系,NpCO2与海水盐度的关系是潮汐作用下湾内和外海水体交换的结果;长时间序列的遥感数据分析也证实湾内、湾外pCO2与平均潮高具有较为一致的变化趋势,且这种趋势在湾外强于湾内。该研究构建了一套海湾小尺度pCO2遥感反演方法,为后续海-气CO2通量大范围、长时序遥感监测奠定了良好基础。

关键词: 近海海湾, 海表pCO2, 支持向量机, 高空间分辨率卫星遥感, 象山港

Abstract:

Coastal bays are greatly affected by human activities and natural changes, and the influence mechanism of variation in seawater carbon source and sink patterns is extremely complex. Due to the small spatial scale of the bay, it is necessary to use wide-bands high-spatial resolution satellite remote sensing for monitoring the air-sea CO2 flux. Compared with the traditional kilometer-level ocean color satellite data, the retrieval of the sea surface partial pressure of CO2 (pCO2), the key parameter to calculate air-sea CO2 flux, is extremely challenging in small-scale bays. Taking Xiangshan Bay in Zhejiang Province in autumn as an example, a satellite retrieval algorithm for sea surface pCO2 was proposed based on the in situ pCO2 data and Sentinel-2 satellite images in the past five years, using the machine learning method of support vector machine (SVM). The algorithm validation results showed a good performance with R2 of 0.92 and RMSE of 23.23 μatm, and the satellite-derived results were consistent with the in situ values. On this basis, the satellite products of pCO2 in Xiangshan Bay in autumn from 2017 to 2021 (September to November) were produced. The results revealed that the pCO2 of Xiangshan Bay showed a decreasing trend from the top of the bay to the mouth of the bay, with an average value of 514.56 μatm, of which the average pCO2 in the inner bay was 551.94 μatm and the average pCO2 in the outer bay was 477.19 μatm, which implied that Xiangshan Bay was a source of atmospheric CO2 as a whole. There was no significant trend change of pCO2 in autumn in the past five years. Combined with the analysis of in situ data of multiple parameters, it was found that the sea surface pCO2 of autumn in Xiangshan Bay in 2021 was jointly regulated by physical mixing and biological activities. Sea surface temperature (SST) had a good positive correlation with pCO2, which was mainly reflected by the thermodynamic equilibrium of carbonate system. In addition, the normalized pCO2(NpCO2) with average temperature had a good negative correlation with seawater salinity and dissolved oxygen saturation. The relationship between NpCO2 and salinity resulted from the exchange of sea water inside the bay and offshore coastal water under tidal effect. Long-time series satellite data analysis also confirmed that sea surface pCO2 had a relatively consistent trend with the average tide height inside and outside the bay, and this trend was stronger in the outside bay than that in the inner bay. In this study, a set of pCO2 remote sensing retrieval methods in the small-scale bay was constructed, which laid a good foundation for the subsequent long-time series satellite monitoring of sea-air CO2 fluxes.

Key words: coastal bay, sea surface pCO2, support vector machines, high spatial resolution satellite remote sensing, Xiangshan Bay

中图分类号: