海洋学研究 ›› 2023, Vol. 41 ›› Issue (1): 82-95.DOI: 10.3969-j.issn.1001-909X.2023.01.007
刘婷宇1(), 白雁1,2,*(), 朱伯仲1,2, 李腾1, 龚芳1
收稿日期:
2022-12-27
修回日期:
2023-02-01
出版日期:
2023-03-15
发布日期:
2023-04-28
通讯作者:
白雁(1979—),女,研究员,主要从事海洋碳循环遥感研究,E-mail:作者简介:
刘婷宇(1999—),女,山东省烟台市人,主要从事海洋遥感研究,E-mail:liuty@sio.org.cn。
基金资助:
LIU Tingyu1(), BAI Yan1,2,*(), ZHU Bozhong1,2, LI Teng1, GONG Fang1
Received:
2022-12-27
Revised:
2023-02-01
Online:
2023-03-15
Published:
2023-04-28
摘要:
近海海湾受人类活动及自然变化影响大,海水碳源汇格局变化影响机制极其复杂。由于海湾空间尺度小,需要使用宽波段的高空间分辨率卫星遥感对海-气CO2通量进行监测评估。相对于传统公里级的水色卫星资料,海-气CO2通量定量估算的关键参数——海表CO2分压(sea surface partial pressure of CO2, pCO2)遥感反演在小尺度海湾具有极大的挑战性。该文以秋季象山港为例,利用走航观测pCO2数据及近5年哨兵2号(Sentinel-2)卫星影像,采用支持向量机(support vector machine, SVM)机器学习的方法,基于Sentinel-2遥感反射率及其比值,建立了海表pCO2的遥感反演算法。算法验证结果显示决定系数为0.92,均方根误差为23.23 μatm,遥感反演结果与实测值具有较高一致性。在此基础上,制作了2017—2021年秋季(9—11月)象山港海表pCO2遥感产品,结果表明,象山港海表pCO2整体上呈现从湾顶向湾口递减的趋势,均值为514.56 μatm,其中,湾内pCO2均值为551.94 μatm,湾外pCO2均值为477.19 μatm,整体呈现为大气CO2的源,且5年间秋季pCO2没有显著趋势性变化。结合多参数走航实测数据分析发现,2021年象山港秋季海表pCO2受物理混合作用及生物活动的共同调控。海表温度(sea surface temperature, SST)与pCO2具有良好的正相关关系,且SST对pCO2的影响主要体现在碳酸盐热力学平衡作用上。此外,平均温度归一化的pCO2(NpCO2)与海水盐度和溶解氧饱和度均具有良好的负相关关系,NpCO2与海水盐度的关系是潮汐作用下湾内和外海水体交换的结果;长时间序列的遥感数据分析也证实湾内、湾外pCO2与平均潮高具有较为一致的变化趋势,且这种趋势在湾外强于湾内。该研究构建了一套海湾小尺度pCO2遥感反演方法,为后续海-气CO2通量大范围、长时序遥感监测奠定了良好基础。
中图分类号:
刘婷宇, 白雁, 朱伯仲, 李腾, 龚芳. 高空间分辨率海表CO2分压的卫星遥感反演算法:机器学习在秋季象山港的应用[J]. 海洋学研究, 2023, 41(1): 82-95.
LIU Tingyu, BAI Yan, ZHU Bozhong, LI Teng, GONG Fang. Satellite retrieval algorithm of high spatial resolution sea surface partial pressure of CO2: Application of machine learning in Xiangshan Bay in autumn[J]. Journal of Marine Sciences, 2023, 41(1): 82-95.
图1 研究区域、走航航线及采样站点 (图中红色三角形代表采样站位置;红色星形代表验潮站位置;黑色圆点代表pCO2极值点分布位置。)
Fig.1 The study area, cruise tracks and sampling stations (Red triangles represent the location of sampling stations; red starsrepresent the position of the tide gauging stations; black dots represent the location of the pCO2 extremums.)
Landsat-8 OLI | Sentinel-2 MSI | |||||||
---|---|---|---|---|---|---|---|---|
波段序号 | 波段信息 | 波长/nm | 空间分辨率/m | 波段序号 | 波段信息 | 波长/nm | 空间分辨率/m | |
Band1 | 气溶胶 | 430~450 | 30 | Band1 | 气溶胶 | 433~453 | 60 | |
Band2 | 蓝光 | 450~515 | 30 | Band2 | 蓝光 | 458~523 | 10 | |
Band3 | 绿光 | 525~600 | 30 | Band3 | 绿光 | 543~578 | 10 | |
Band4 | 红光 | 630~680 | 30 | Band4 | 红光 | 650~680 | 10 | |
Band5 | 植被红边 | 698~713 | 20 | |||||
Band6 | 植被红边 | 733~748 | 20 | |||||
Band7 | 植被红边 | 773~793 | 20 | |||||
Band5 | 近红外 | 845~885 | 30 | Band8 | 近红外 | 785~900 | 10 | |
Band8a | 植被红边 | 855~875 | 20 | |||||
Band9 | 水蒸气 | 935~955 | 60 | |||||
Band6 | 短波红外 | 1 560~1 660 | 30 | Band10 | 短波红外 | 1 360~1 390 | 20 | |
Band7 | 短波红外 | 2 100~2 300 | 30 | Band11 | 短波红外 | 1 565~1 655 | 20 | |
Band8 | 全色波段 | 503~676 | 15 | Band12 | 短波红外 | 2 100~2 280 | 20 |
表1 Sentinel-2 MSI及Landsat-8 OLI传感器波段信息
Tab.1 Band informations of Sentinel-2 MSI and Landsat-8 OLI sensor
Landsat-8 OLI | Sentinel-2 MSI | |||||||
---|---|---|---|---|---|---|---|---|
波段序号 | 波段信息 | 波长/nm | 空间分辨率/m | 波段序号 | 波段信息 | 波长/nm | 空间分辨率/m | |
Band1 | 气溶胶 | 430~450 | 30 | Band1 | 气溶胶 | 433~453 | 60 | |
Band2 | 蓝光 | 450~515 | 30 | Band2 | 蓝光 | 458~523 | 10 | |
Band3 | 绿光 | 525~600 | 30 | Band3 | 绿光 | 543~578 | 10 | |
Band4 | 红光 | 630~680 | 30 | Band4 | 红光 | 650~680 | 10 | |
Band5 | 植被红边 | 698~713 | 20 | |||||
Band6 | 植被红边 | 733~748 | 20 | |||||
Band7 | 植被红边 | 773~793 | 20 | |||||
Band5 | 近红外 | 845~885 | 30 | Band8 | 近红外 | 785~900 | 10 | |
Band8a | 植被红边 | 855~875 | 20 | |||||
Band9 | 水蒸气 | 935~955 | 60 | |||||
Band6 | 短波红外 | 1 560~1 660 | 30 | Band10 | 短波红外 | 1 360~1 390 | 20 | |
Band7 | 短波红外 | 2 100~2 300 | 30 | Band11 | 短波红外 | 1 565~1 655 | 20 | |
Band8 | 全色波段 | 503~676 | 15 | Band12 | 短波红外 | 2 100~2 280 | 20 |
图2 象山港11个站点实测遥感反射率曲线 (粉色矩形区域代表Sentinel-2 MSI的8个波段范围,图顶端为波段序号;实心圆点代表各波段中心波长。)
Fig.2 Curve of in situ remote sensing reflectance of eleven stations in Xiangshan Bay (The pink rectangular areas represent the range of 8 bands of Sentinel-2 MSI, with band numbers at the top of the figure, and the solid dots represent the center wavelengths of each band.)
图4 算法验证结果 (图4a和4b分别为SVM训练集和验证集建模及验证结果,图中黑色直线为1∶1直线,橙色直线为整体拟合曲线。图4c和4d分别为走航实测(2021年11月10日)及遥感反演(2021年11月11日)的pCO2结果。图4e为对应经度下实测pCO2与反演pCO2的结果对比。)
Fig.4 Algorithm validation result (Fig.4a and fig.4b are modeling and validation results of the SVM training and validation dataset. The black straight line is the 1∶1 line; The orange line is the overall fitted curve. Fig.4c and fig.4d are pCO2 results of in situ measurement (Nov. 10, 2021) and satellite retrieval (Nov. 11, 2021), respectively. Fig.4e is the comparison between in situ pCO2 and satellite-derived pCO2 at corresponding longitude.)
图5 2017—2021年秋季象山港Sentinel-2 MSI pCO2遥感反演结果(a、c、e、g、i、k)与邻近时间Landsat-8 OLI遥感SST空间分布(b、d、f、h、j、l) (红色闪电代表大唐乌沙山发电厂位置。)
Fig.5 Spatial distribution of Sentinel-2 MSI satellite-derived pCO2 (a, c, e, g, i, k) and Landsat-8 OLI SST (b, d, f, h, j, l) of adjacent time in Xiangshan Bay in autumn 2017-2021 (Red lightning represents the location of Datang power Plant.)
图6 2017—2021年秋季象山港pCO2遥感反演空间分布 (红色闪电代表大唐乌沙山发电厂位置。)
Fig.6 Spatial distribution of satellite-derived pCO2 in Xiangshan Bay in autumn 2017-2021 (Red lightning represents the location of Datang power Plant.)
图7 2021年11月10日象山港现场走航观测要素分布及其与pCO2相关性分析 (图7a、7c、7e分别为走航测量的SST、盐度、溶解氧饱和度的空间分布;图7b为pCO2与SST的相关性,其中红色与蓝色点分别代表最靠近湾口与湾顶的数据;图7d和7f分别为NpCO2与盐度、溶解氧饱和度的相关性。图中黑色直线为全部数据拟合曲线,红色虚线为去除圆圈内数据的拟合曲线。)
Fig.7 Spatial distribution of underway measured parameters and their correlations with pCO2 in Xiangshan Bay in Nov. 10, 2021 (Fig.7a, fig.7c and fig.7e are the spatial distribution of SST, salinity and dissolved oxygen saturation, respectively. Fig.7b is the correlation between pCO2 and SST and the red and blue dots represent the data closest to the mouth and top of the bay. Fig.7d and fig.7f are the correlation between NpCO2 and salinity and dissolved oxygen saturation. The black straight lines are the fitting curves of total data, and the red dashed line is the fitting curve with the data in circles removed.)
[1] |
FRIEDLINGSTEIN P, O’SULLIVAN M, JONES M W, et al. Global carbon budget 2022[J]. Earth System Science Data, 2022, 14: 4811-4900.
DOI URL |
[2] |
GRUBER N. Carbon at the coastal interface[J]. Nature, 2015, 517: 148-149.
DOI |
[3] |
LOHRENZ S E, CAI W J, CHAKRABORTY S, et al. Satellite estimation of coastal pCO2 and air-sea flux of carbon dioxide in the northern Gulf of Mexico[J]. Remote Sensing of Environment, 2018, 207: 71-83.
DOI URL |
[4] |
ETCHETO J, DANDONNEAU Y, BOUTIN J. Estimating the interannual variability of the air-sea CO2 flux in the east equatorial Pacific[J]. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 1999, 24(5): 405-410.
DOI URL |
[5] |
ONO T, SAINO T, KURITA N, et al. Basin-scale extrapo-lation of shipboard pCO2 data by using satellite SST and Chl a[J]. International Journal of Remote Sensing, 2004, 25(19): 3803-3815.
DOI URL |
[6] | LOHRENZ S E, CAI W J. Satellite ocean color assessment of air-sea fluxes of CO2 in a river-dominated coastal margin[J]. Geophysical Research Letters, 2006, 33(1): L01601. |
[7] |
JOSHI I D, WARD N D, D’SA E J, et al. Seasonal trends in surface pCO2 and air-sea CO2 fluxes in Apalachicola Bay, Florida, from VIIRS ocean color[J]. Journal of Geophysical Research: Biogeosciences, 2018, 123(8): 2466-2484.
DOI URL |
[8] |
TELSZEWSKI M, CHAZOTTES A, SCHUSTER U, et al. Estimating the monthly pCO2 distribution in the North Atlantic using a self-organizing neural network[J]. Biogeosciences, 2009, 6(8): 1405-1421.
DOI URL |
[9] |
BAI Y, CAI W J, HE X Q, et al. A mechanistic semi-analytical method for remotely sensing sea surface pCO2 river-dominated coastal oceans: A case study from the East China Sea[J]. Journal of Geophysical Research: Oceans, 2015, 120(3): 2331-2349.
DOI URL |
[10] |
吕航宇, 白雁, 李骞, 等. 夏季珠江口海域海水CO2分压的卫星遥感反演[J]. 海洋学研究, 2018, 36(2):1-11.
DOI |
LÜ H Y, BAI Y, LI Q, et al. Satellite remote sensing retrieval of aquatic pCO2 in summer in the Pearl River Estuary[J]. Journal of Marine Sciences, 2018, 36(2): 1-11. | |
[11] |
SONG X L, BAI Y, CAI W J, et al. Remote sensing of sea surface pCO2 in the Bering Sea in summer based on a mechanistic semi-analytical algorithm (MeSAA)[J]. Remote Sensing, 2016, 8(7): 558.
DOI URL |
[12] |
LE C F, GAO Y Y, CAI W J, et al. Estimating summer sea surface pCO2 on a river-dominated continental shelf using a satellite-based semi-mechanistic model[J]. Remote Sensing of Environment, 2019, 225: 115-126.
DOI URL |
[13] |
XU P, MAO X Y, JIANG W S. Mapping tidal residual circulations in the outer Xiangshan Bay using a numerical model[J]. Journal of Marine Systems, 2016, 154: 181-191.
DOI URL |
[14] | 吴凡杰, 吴钢锋, 董平, 等. 基于三维水动力水质数值模型的象山港排污策略研究[J]. 海洋环境科学, 2021, 40(1):24-33. |
WU F J, WU G F, DONG P, et al. An investigation of the pollutants discharge control strategies in Xiangshan Bay based on 3D hydrodynamic and water quality numerical modelling[J]. Marine Environmental Science, 2021, 40(1): 24-33. | |
[15] |
张健, 李佳芮, 刘书明, 等. 象山港生态系统脆弱性及其评价体系构建[J]. 海洋学研究, 2017, 35(2):74-81.
DOI |
ZHANG J, LI J R, LIU S M, et al. The vulnerability of ecosystem and evaluation system construction of Xiangshangang Bay[J]. Journal of Marine Sciences, 2017, 35(2): 74-81.
DOI |
|
[16] |
陈华伟, 吴卫飞. 象山港内新增网箱养殖污染物对海水水质的影响预测[J]. 渔业研究, 2021, 43(2):183-192.
DOI |
CHEN H W, WU W F. Prediction of the influence of new cage culture pollutants on the seawater quality in Xiangshan Harbor[J]. Journal of Fisheries Research, 2021, 43(2): 183-192. | |
[17] | 钱茹茹. 2001—2020年宁波近岸海域赤潮灾害特征分析[J]. 江苏海洋大学学报:自然科学版, 2022, 31(3):11-17. |
QIAN R R. Analysis on the characteristics of red tide disaster in Ningbo coastal waters from 2001 to 2020[J]. Journal of Jiangsu Ocean University: Natural Science Edition, 2022, 31(3): 11-17. | |
[18] |
BAI Y, PAN D L, CAI W J, et al. Remote sensing of salinity from satellite-derived CDOM in the Changjiang River dominated East China Sea[J]. Journal of Geophysical Research: Oceans, 2013, 118(1): 227-243.
DOI URL |
[19] |
WEISS R F. Carbon dioxide in water and seawater: The solubility of a non-ideal gas[J]. Marine Chemistry, 1974, 2(3): 203-215.
DOI URL |
[20] | TAKAHASHI T, OLAFSSON J, GODDARD J G, et al. Seasonal variation of CO2 and nutrients in the high-latitude surface oceans: A comparative study[J]. Global Biogeo-chemical Cycles, 1993, 7(4): 843-878. |
[21] | 国家海洋局. 海洋调查规范第4部分:海水化学要素调查: GB/T 12763.4—2007[S]. 2007. |
State Oceanic Administration. Specifications for oceanographic survey—Part 4: Survey of chemical parameters in sea water: GB/T 12763.4—2007[S]. 2007. | |
[22] | 陈楚群, 潘志林, 施平. 海水光谱模拟及其在黄色物质遥感反演中的应用[J]. 热带海洋学报, 2003, 22(5):33-39. |
CHEN C Q, PAN Z L, SHI P. Simulation of sea water reflectance and its application in retrieval of yellow substance by remote sensing data[J]. Journal of Tropical Oceanography, 2003, 22(5): 33-39. | |
[23] |
LI T, ZHU B Z, CAO F, et al. Monitoring changes in the transparency of the largest reservoir in Eastern China in the past decade, 2013-2020[J]. Remote Sensing, 2021, 13(13): 2570.
DOI URL |
[24] | WANG X Y, ZHONG Y X. Statistical learning theory and state of the art in SVM[C]// Proceedings of the second IEEE International Conference on Cognitive Informatics, 2003: 55-59. |
[25] |
YANG K, YU Z Y, LUO Y, et al. Spatial and temporal variations in the relationship between lake water surface temperatures and water quality-A case study of Dianchi Lake[J]. Science of the Total Environment, 2018, 624: 859-871.
DOI URL |
[26] | KIM Y H, IM J, HA H K, et al. Machine learning approaches to coastal water quality monitoring using GOCI satellite data[J]. GIScience & Remote Sensing, 2014, 51(2): 158-174. |
[27] | FRIEDRICH T, OSCHLIES A. Neural network-based estimates of North Atlantic surface pCO2 from satellite data: A methodological study[J]. Journal of Geophysical Research, 2009, 114(C3): C03020. |
[28] | 黄菊, 高郭平, 程天宇, 等. 2015年冬季南黄海水文特征及海-气CO2通量分析[J]. 上海海洋大学学报, 2017, 26(5):757-765. |
HUANG J, GAO G P, CHENG T Y, et al. Hydrological features and air-sea CO2 fluxes of the Southern Yellow Sea in the winter of 2015[J]. Journal of Shanghai Ocean University, 2017, 26(5): 757-765. | |
[29] |
SHIM J, KIM D, KANG Y C, et al. Seasonal variations in pCO2 and its controlling factors in surface seawater of the northern East China Sea[J]. Continental Shelf Research, 2007, 27(20): 2623-2636.
DOI URL |
[30] | 张龙军. 东海海-气界面CO2通量研究[D]. 青岛: 中国海洋大学, 2003. |
ZHANG L J. The study on the CO2 flux at the sea-air interface over the East China Sea[D]. Qingdao: Ocean University of China, 2003. | |
[31] | 石晓勇, 陆茸, 张传松, 等. 长江口邻近海域溶解氧分布特征及主要影响因素[J]. 中国海洋大学学报:自然科学版, 2006, 36(2):287-290,294. |
SHI X Y, LU R, ZHANG C S, et al. Distribution and main influence factors process of dissolved oxygen in the adjacent area of the Changjiang Estuary in autumn[J]. Periodical of Ocean University of China, 2006, 36(2): 287-290, 294. |
[1] | 黄日鹏, 李加林, 杨磊, 何改丽, 冯佰香. 象山港海岸带人工建设地貌强度指数及其空间格局演变特征[J]. 海洋学研究, 2018, 36(1): 46-57. |
[2] | 张健, 李佳芮, 刘书明, 刘捷, 杨翼. 象山港生态系统脆弱性及其评价体系构建[J]. 海洋学研究, 2017, 35(2): 74-81. |
[3] | 廖红芳, 郑忠明, REGAN Nicholaus, 朱津永. 象山港大黄鱼Pseudosciaena crocea网箱养殖区沉积物-水界面营养盐通量研究[J]. 海洋学研究, 2016, 34(1): 84-92. |
[4] | 徐谅慧, 李加林, 袁麒翔, 王明月, 卢雪珠, 杨磊. 象山港海岸带景观格局演化[J]. 海洋学研究, 2015, 33(2): 47-56. |
[5] | 郭意新, 李加林, 徐谅慧, 郑忠明, 钱瑛瑛, 任丽燕, 关健. 象山港海岸带景观生态风险演变研究[J]. 海洋学研究, 2015, 33(1): 62-68. |
[6] | 曹维, 仵彦卿, 唐德富, 杨耀芳, 沈继平, 费岳军. 象山港海域海洋环境监测站位优化及验证分析[J]. 海洋学研究, 2014, 32(4): 50-57. |
[7] | 王霄鹏, 张杰, 马毅, 任广波. 不同极化方式SAR与TM融合影像滨海湿地分类精度比较[J]. 海洋学研究, 2014, 32(1): 40-46. |
[8] | 彭辉, 姚炎明, 刘莲. 象山港水交换特性研究[J]. 海洋学研究, 2012, 30(4): 1-12. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||