海洋学研究 ›› 2023, Vol. 41 ›› Issue (2): 114-122.DOI: 10.3969/j.issn.1001-909X.2023.02.010
王津果1,2,3(), 盛杨杰1,2,3,4, 王续昆1,2,3, 倪嘉璇1,2,3, 武卉1,2,3, 刘卫国5, 周伟1,2,3,5,*()
收稿日期:
2022-04-02
修回日期:
2022-06-29
出版日期:
2023-06-15
发布日期:
2023-07-27
通讯作者:
*周伟(1985—),男,博士,高级工程师,主要从事水产育苗和养殖等研究,E-mail:作者简介:
王津果(1989—),女,河南省许昌市人,博士,主要从事海洋生物遗传育种研究,E-mail:2020000035@jou.edu.cn。
基金资助:
WANG Jinguo1,2,3(), SHENG Yangjie1,2,3,4, WANG Xukun1,2,3, NI Jiaxuan1,2,3, WU Hui1,2,3, LIU Weiguo5, ZHOU Wei1,2,3,5,*()
Received:
2022-04-02
Revised:
2022-06-29
Online:
2023-06-15
Published:
2023-07-27
摘要:
绿藻微观繁殖体具有快速生长和繁殖的特性,是绿潮暴发重要的种子来源。以浒苔(Ulva prolifera)微观繁殖体发育而来的幼苗为实验材料,研究不同CO2水平(400 μatm和1 000 μatm)和无机磷酸盐(dissolved inorganic phoshphate, DIP)浓度(0.32 μmol·L-1、3.62 μmol·L-1、36.2 μmol·L-1)下单因子及双因子交互作用对其生长和光合生理指标的影响。相对生长速率(RGR)、净光合速率(Pn)和呼吸速率(Rd)等生长指标显示:CO2对RGR和Pn有显著影响(p<0.05);DIP对RGR、Pn和Rd均有显著影响(p<0.05),随着DIP增加,RGR和Pn升高,Rd降低;双因子交互作用对3个指标影响均不显著(p>0.05)。最大相对光合电子传递速率(rETRmax)、饱和光强(Ek)、有效光合量子产率[Y(II)]、光能利用效率(α)等荧光参数显示:CO2对rETRmax、Ek影响显著(p<0.05); DIP浓度升高使Y(II)、rETRmax、α和Ek显著提高(p<0.05);双因子交互作用对rETRmax和Y(II)影响显著(p<0.05),对α和Ek影响不显著(p>0.05)。Chl a、Chl b和类胡萝卜素等色素指标显示:CO2、DIP以及交互作用对3个指标影响均显著(p<0.05),高CO2水平明显抑制色素的合成,并且随着DIP浓度升高,抑制程度加剧;3个指标与DIP均呈正相关。研究表明,高CO2水平和高DIP浓度会明显促进浒苔幼苗的生长,为绿潮的暴发提供了有利条件。
中图分类号:
王津果, 盛杨杰, 王续昆, 倪嘉璇, 武卉, 刘卫国, 周伟. CO2和DIP对浒苔幼苗生长及光合特性的影响[J]. 海洋学研究, 2023, 41(2): 114-122.
WANG Jinguo, SHENG Yangjie, WANG Xukun, NI Jiaxuan, WU Hui, LIU Weiguo, ZHOU Wei. Effects of CO2 and dissolved inorganic phosphate on the growth and photosynthetic performance of Ulva prolifera seedlings[J]. Journal of Marine Sciences, 2023, 41(2): 114-122.
处理组 | pH | pCO2/μatm | DIC/(μmol·kg-1) | HC | C | CO2/(μmol·kg-1) | TA/(μmol·kg-1) |
---|---|---|---|---|---|---|---|
LCLP | 8.20±0.01a | 382.36±13.07a | 2 002.85±19.95a | 1 817.53±21.22a | 172.70±2.17a | 12.26±0.43a | 2 251.60±16.65a |
LCMP | 8.18±0.02a | 408.82±24.69a | 2 036.32±33.82a | 1 854.54±36.41a | 168.29±3.41a | 13.49±0.81a | 2 276.87±27.12a |
LCHP | 8.19±0.02a | 395.95±20.66a | 2 022.36±37.76a | 1 838.52±36.85a | 170.77±5.93a | 13.07±0.68a | 2 267.25±38.27a |
HCLP | 7.85±0.00b | 931.28±15.51b | 2 092.77±34.85b | 1 978.08±32.94b | 83.96±1.40b | 30.73±0.51b | 2 194.97±35.74a |
HCMP | 7.86±0.01b | 908.84±38.05b | 2 106.87±46.75ab | 1 989.78±44.75b | 87.09±2.30b | 30.00±1.26b | 2 214.06±46.52a |
HCHP | 7.85±0.03b | 940.03±44.52b | 2 111.23±37.31b | 1 995.36±32.66b | 84.84±6.29b | 31.02±1.47b | 2 214.06±46.52a |
表1 不同处理组的海水碳酸盐系统参数
Tab.1 Parameters of seawater carbonate system under different treatments
处理组 | pH | pCO2/μatm | DIC/(μmol·kg-1) | HC | C | CO2/(μmol·kg-1) | TA/(μmol·kg-1) |
---|---|---|---|---|---|---|---|
LCLP | 8.20±0.01a | 382.36±13.07a | 2 002.85±19.95a | 1 817.53±21.22a | 172.70±2.17a | 12.26±0.43a | 2 251.60±16.65a |
LCMP | 8.18±0.02a | 408.82±24.69a | 2 036.32±33.82a | 1 854.54±36.41a | 168.29±3.41a | 13.49±0.81a | 2 276.87±27.12a |
LCHP | 8.19±0.02a | 395.95±20.66a | 2 022.36±37.76a | 1 838.52±36.85a | 170.77±5.93a | 13.07±0.68a | 2 267.25±38.27a |
HCLP | 7.85±0.00b | 931.28±15.51b | 2 092.77±34.85b | 1 978.08±32.94b | 83.96±1.40b | 30.73±0.51b | 2 194.97±35.74a |
HCMP | 7.86±0.01b | 908.84±38.05b | 2 106.87±46.75ab | 1 989.78±44.75b | 87.09±2.30b | 30.00±1.26b | 2 214.06±46.52a |
HCHP | 7.85±0.03b | 940.03±44.52b | 2 111.23±37.31b | 1 995.36±32.66b | 84.84±6.29b | 31.02±1.47b | 2 214.06±46.52a |
图1 不同处理下浒苔幼苗的相对生长速率 (不同小写字母表示在LC条件下不同处理组间差异显著,p<0.05;不同大写字母表示在HC条件下不同处理组间差异显著,p<0.05;*表示同一DIP浓度下不同CO2处理组间差异显著,p<0.05。)
Fig.1 Relative growth rate of U.prolifera seedlings under different treatments (Different lowercase letters represent significant differences among different treatments under LC, p<0.05), and different capital letters represent significant differences among different treatments under HC, p<0.05; Asterisk represents significant differences between LC and HC within a DIP treatment,p<0.05.)
图2 不同处理下浒苔幼苗的有效光合量子产率 (不同小写字母表示在LC条件下不同处理组间差异显著, p<0.05;不同大写字母表示在HC条件下不同处理组间差异显著, p<0.05。)
Fig.2 Effective quantum yield of U.prolifera seedlings under different treatments (Different lowercase letters represent significant differences among different treatments under LC, p<0.05), and different capital letters represent significant differences among different treatments under HC, p<0.05.)
处理组 | 最大相对光合电子传递速率 (rETRmax)/(μmol·m-2·s-1) | 光能利用 效率(α) | 饱和光强(Ek)/ (μmol·m-2·s-1) |
---|---|---|---|
LCLP | 61.89±3.12a | 0.29±0.02a | 211.38±6.35a |
LCMP | 92.63±1.93b | 0.31±0.02ab | 302.23±23.16b |
LCHP | 105.88±2.93c | 0.33±0.02b | 317.11±13.97b |
HCLP | 48.39±1.28A* | 0.32±0.02A | 153.20±11.79A* |
HCMP | 92.63±7.87B | 0.34±0.01A | 274.33±15.32B |
HCHP | 104.79±6.13B | 0.35±0.03A | 303.19±38.09B |
表2 不同处理下浒苔幼苗的最大相对光合电子传递速率(rETRmax)、光能利用效率(α)与饱和光强(Ek)
Tab.2 The maximum rETR (rETRmax), light utilization efficiency (α) and saturation light intensity (Ek) of U.prolifera seedlings under different treatments
处理组 | 最大相对光合电子传递速率 (rETRmax)/(μmol·m-2·s-1) | 光能利用 效率(α) | 饱和光强(Ek)/ (μmol·m-2·s-1) |
---|---|---|---|
LCLP | 61.89±3.12a | 0.29±0.02a | 211.38±6.35a |
LCMP | 92.63±1.93b | 0.31±0.02ab | 302.23±23.16b |
LCHP | 105.88±2.93c | 0.33±0.02b | 317.11±13.97b |
HCLP | 48.39±1.28A* | 0.32±0.02A | 153.20±11.79A* |
HCMP | 92.63±7.87B | 0.34±0.01A | 274.33±15.32B |
HCHP | 104.79±6.13B | 0.35±0.03A | 303.19±38.09B |
图4 不同处理下浒苔幼苗的净光合速率(a)和呼吸速率(b) (不同小写字母表示在LC条件下不同处理组间差异显著,p<0.05;不同大写字母表示在HC条件下不同处理组间差异显著,p<0.05;*表示同一DIP浓度下不同CO2处理组间差异显著,p<0.05。)
Fig.4 Net photosynthetic rate (a) and respiration rate (b) of U.prolifera seedlings under different treatments (Different lowercase letters represent significant differences among different treatments under LC, p<0.05, and different capital letters represent significant differences among different treatments under HC, p<0.05; Asterisk represents significant differences between LC and HC within a DIP treatment, p<0.05.)
图5 不同处理下浒苔幼苗的叶绿素a(a)、叶绿素b(b)与类胡萝卜素(c)含量 (不同小写字母表示在LC条件下不同处理组间差异显著,p<0.05;不同大写字母表示在HC条件下不同处理组间差异显著,p<0.05;*表示同一DIP浓度下不同CO2处理组间差异显著,p<0.05。)
Fig.5 The contents of chlorophyll a (a), chlorophyll b (b) and carotenoids (c) contents in U.prolifera seedlings under different treatments (Different lowercase letters represent significant differences among different treatments under LC, p<0.05, and different capital letters represent significant differences among different treatments under HC, p<0.05; Asterisk represents significant differences between LC and HC within a DIP treatment, p<0.05.)
[1] |
SMITH S V. Marine macrophytes as a global carbon sink[J]. Science, 1981, 211(4484): 838-840.
DOI PMID |
[2] | 杨宇峰, 宋金明, 林小涛, 等. 大型海藻栽培及其在近海环境的生态作用[J]. 海洋环境科学, 2005, 24(3):77-80. |
YANG Y F, SONG J M, LIN X T, et al. Seaweed cultivation and its ecological roles in coastal waters[J]. Marine Environ-mental Science, 2005, 24(3): 77-80. | |
[3] |
GAO G, CLARE A S, ROSE C, et al. Intrinsic and extrinsic control of reproduction in the green tide-forming alga,Ulva rigida[J]. Environmental and Experimental Botany, 2017, 139: 14-22.
DOI URL |
[4] |
SMETACEK V, ZINGONE A. Green and golden seaweed tides on the rise[J]. Nature, 2013, 504(7478): 84-88.
DOI |
[5] | 沈颂东. “微观繁殖体”溯源[J]. 海洋与湖沼, 2022, 53(1):1-7. |
SHEN S D. Brief introduction of micropropagule[J]. Ocea-nologia et Limnologia Sinica, 2022, 53(1): 1-7. | |
[6] |
SABINE C L, FEELY R A, GRUBER N, et al. The oceanic sink for anthropogenic CO2[J]. Science, 2004, 305(5682): 367-371.
DOI PMID |
[7] |
CALDEIRA K, WICKETT M E. Oceanography: Anthropogenic carbon and ocean pH[J]. Nature, 2003, 425(6956): 365.
DOI |
[8] |
CHEN B B, LIN L D, MA Z L, et al. Carbon and nitrogen accumulation and interspecific competition in two algae species, Pyropia haitanensis and Ulva lactuca, under ocean acidification conditions[J]. Aquaculture International, 2019, 27(3): 721-733.
DOI |
[9] |
GAO G, BEARDALL J, BAO M L, et al. Ocean acidification and nutrient limitation synergistically reduce growth and photosynthetic performances of a green tide alga Ulva linza[J]. Biogeosciences, 2018, 15(11): 3409-3420.
DOI URL |
[10] |
YUE F R, GAO G, MA J, et al. Future CO2-induced seawater acidification mediates the physiological performance of a green alga Ulva linza in different photoperiods[J]. PeerJ, 2019, 7: e7048.
DOI URL |
[11] | GAO G, QU L M, XU T P, et al. Future CO2-induced ocean acidification enhances resilience of a green tide alga to low-salinity stress[J]. ICES Journal of Marine Science, 2019, 76(7): 2437-2445. |
[12] |
BARAKAT K M, EL-SAYED H S, KHAIRY H M, et al. Effects of ocean acidification on the growth and biochemical composition of a green alga (Ulva fasciata) and its asso-ciated microbiota[J]. Saudi Journal of Biological Sciences, 2021, 28(9): 5106-5114.
DOI URL |
[13] |
ZHOU W, WU H, HUANG J J, et al. Elevated-CO2 and nutrient limitation synergistically reduce the growth and photosynthetic performances of a commercial macroalga Gracilariopsis lemaneiformis[J]. Aquaculture, 2022, 550:737878.
DOI URL |
[14] |
GUTOW L, RAHMAN M M, BARTL K, et al. Ocean acidification affects growth but not nutritional quality of the seaweed Fucus vesiculosus (Phaeophyceae, Fucales)[J]. Journal of Experimental Marine Biology and Ecology, 2014, 453: 84-90.
DOI URL |
[15] |
JOHNSON M D, PRICE N N, SMITH J E. Contrasting effects of ocean acidification on tropical fleshy and calcareous algae[J]. PeerJ, 2014, 2: e411.
DOI URL |
[16] |
KANG E J, HAN A R, KIM J H, et al. Evaluating bloom potential of the green-tide forming alga Ulva ohnoi under ocean acidification and warming[J]. Science of the Total Environment, 2021, 769: 144443.
DOI URL |
[17] |
GRABA-LANDRY A, HOEY A S, MATLEY J K, et al. Ocean warming has greater and more consistent negative effects than ocean acidification on the growth and health of subtropical macroalgae[J]. Marine Ecology Progress Series, 2018, 595: 55-69.
DOI URL |
[18] |
XU J T, GAO K S. Future CO2-induced ocean acidification mediates the physiological performance of a green tide alga[J]. Plant Physiology, 2012, 160(4): 1762-1769.
DOI PMID |
[19] |
GAO G, LIU Y M, LI X S, et al. An ocean acidification acclimatised green tide alga is robust to changes of seawater carbon chemistry but vulnerable to light stress[J]. PLoS One, 2016, 11(12): e0169040.
DOI URL |
[20] |
GAO G, CLARE A S, ROSE C, et al. Eutrophication and warming-driven green tides (Ulva rigida) are predicted to increase under future climate change scenarios[J]. Marine Pollution Bulletin, 2017, 114(1): 439-447.
DOI PMID |
[21] |
XU Z G, GAO G, XU J T, et al. Physiological response of a golden tide alga (Sargassum muticum) to the interaction of ocean acidification and phosphorus enrichment[J]. Biogeosciences, 2017, 14(3): 671-681.
DOI URL |
[22] |
LI S X, YU K F, HUO Y Z, et al. Effects of nitrogen and phosphorus enrichment on growth and photosynthetic assimilation of carbon in a green tide-forming species (Ulva prolifera) in the Yellow Sea[J]. Hydrobiologia, 2016, 776(1): 161-171.
DOI URL |
[23] |
CHU Y Y, LIU Y, LI J Y, et al. Effects of elevated pCO2 and nutrient enrichment on the growth, photosynthesis, and biochemical compositions of the brown alga Saccharina japonica (Laminariaceae, Phaeophyta)[J]. PeerJ, 2019, 7: e8040.
DOI URL |
[24] | VILLARES R, PUENTE X, CARBALLEIRA A. Nitrogen and phosphorus in Ulva sp. in the Galician Rias Bajas (northwest Spain): Seasonal fluctuations and influence on growth[J]. Boletin-Instituto Espanol de Oceanografia, 1999, 15(1-4): 337-341. |
[25] |
TEICHBERG M, FOX S E, OLSEN Y S, et al. Eutrophication and macroalgal blooms in temperate and tropical coastal waters: Nutrient enrichment experiments with Ulva spp.[J]. Global Change Biology, 2010, 16(9): 2624-2637.
DOI URL |
[26] |
CHEN H H, FENG X Q, JIANG M J, et al. Estimating the ploidy of Gracilariopsis lemaneiformis at both the cellular and genomic level[J]. Journal of Phycology, 2020, 56(5): 1339-1348.
DOI URL |
[27] |
EILERS P H C, PEETERS J C H. A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton[J]. Ecological Modelling, 1988, 42(3/4): 199-215.
DOI URL |
[28] |
GAO G, LIU Y M, LI X S, et al. Expected CO2-induced ocean acidification modulates copper toxicity in the green tide alga Ulva prolifera[J]. Environmental and Experimental Botany, 2017, 135: 63-72.
DOI URL |
[29] |
WELLBURN A R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution[J]. Journal of Plant Physiology, 1994, 144(3): 307-313.
DOI URL |
[30] |
YOUNG C S, GOBLER C J. Ocean acidification accelerates the growth of two bloom-forming macroalgae[J]. PLoS One, 2016, 11(5): e0155152.
DOI URL |
[31] |
GIORDANO M, BEARDALL J, RAVEN J A. CO2 concen-trating mechanisms in algae: Mechanisms, environmental modulation, and evolution[J]. Annual Review of Plant Biology, 2005, 56: 99-131.
DOI URL |
[32] |
RAVEN J A, BEARDALL J, SÁNCHEZ-BARACALDO P. The possible evolution and future of CO2—concentrating mechanisms[J]. Journal of Experimental Botany, 2017, 68(14): 3701-3716.
DOI URL |
[33] |
LI Y H, ZHONG J L, ZHENG M S, et al. Photoperiod mediates the effects of elevated CO2 on the growth and physiological performance in the green tide alga Ulva prolifera[J]. Marine Environmental Research, 2018, 141: 24-29.
DOI URL |
[34] |
IRIHIMOVITCH V, YEHUDAI-RESHEFF S. Phosphate and sulfur limitation responses in the chloroplast of Chlamy-domonas reinhardtii[J]. FEMS Microbiology Letters, 2008, 283(1): 1-8.
DOI URL |
[35] |
ZER H, OHAD I. Light, redox state, thylakoid-protein phosphorylation and signaling gene expression[J]. Trends in Biochemical Sciences, 2003, 28(9): 467-470.
DOI PMID |
[36] |
FIGUEROA F L, ISRAEL A, NEORI A, et al. Effects of nutrient supply on photosynthesis and pigmentation in Ulva lactuca (Chlorophyta): Responses to short-term stress[J]. Aquatic Biology, 2009, 7: 173-183.
DOI URL |
[37] |
REIDENBACH L B, FERNANDEZ P A, LEAL P P, et al. Growth, ammonium metabolism, and photosynthetic properties of Ulva australis (Chlorophyta) under decreasing pH and ammonium enrichment[J]. PLoS One, 2017, 12(11):e0188389.
DOI URL |
[38] |
MA J, WANG W, LIU X Y, et al. Zinc toxicity alters the photosynthetic response of red alga Pyropia yezoensis to ocean acidification[J]. Environmental Science and Pollution Research, 2020, 27(3): 3202-3212.
DOI |
[1] | 于雷, 李三忠, 索艳慧, 王秀娟. 海岸海洋碳循环过程与CO2负排放[J]. 海洋学研究, 2023, 41(1): 14-25. |
[2] | 刘婷宇, 白雁, 朱伯仲, 李腾, 龚芳. 高空间分辨率海表CO2分压的卫星遥感反演算法:机器学习在秋季象山港的应用[J]. 海洋学研究, 2023, 41(1): 82-95. |
[3] | 苗燕熠, 王斌, 李德望, 金海燕, 江志兵, 马晓, 于培松, 陈建芳, 王俊洋. 大风事件对长江口及邻近海域海-气CO2通量的影响[J]. 海洋学研究, 2020, 38(1): 42-49. |
[4] | 钟佳丽, 李亚鹤, 郑明山, 臧茹, 徐年军. 不同模式高盐胁迫对浒苔光合生理及相关基因表达的影响[J]. 海洋学研究, 2019, 37(2): 72-80. |
[5] | 赖雯奕, 娄亚敏, 徐继林, 周成旭, 严小军. 多胺对3株硅藻生长的影响[J]. 海洋学研究, 2018, 36(3): 96-100. |
[6] | 吕航宇, 白雁, 李骞, 江洪. 夏季珠江口海域海水CO2分压的卫星遥感反演[J]. 海洋学研究, 2018, 36(2): 1-11. |
[7] | 黄世玉, 张丽莉. 鲍及牡蛎内脏可溶物培养球等鞭金藻的效果[J]. 海洋学研究, 2015, 33(4): 70-76. |
[8] | 李熠, 何海伦, 陈大可. 基于海水环境和气象参数经验公式估算的东海海-气CO2通量[J]. 海洋学研究, 2012, 30(3): 30-40. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||