海洋学研究 ›› 2023, Vol. 41 ›› Issue (2): 45-60.DOI: 10.3969/j.issn.1001-909X.2023.02.004
收稿日期:
2022-09-21
修回日期:
2022-11-22
出版日期:
2023-06-15
发布日期:
2023-07-27
通讯作者:
*廖光洪(1977—),男,教授,主要从事海洋动力学方面的研究,E-mail:作者简介:
戈玉宇(1996—),女,江苏省泰州市人,主要从事海洋动力学方面的研究,E-mail:jichan@hhu.edu.cn。
基金资助:
Received:
2022-09-21
Revised:
2022-11-22
Online:
2023-06-15
Published:
2023-07-27
摘要:
随着观测技术的进步和海洋数值模拟能力的提升,已发现在海洋次表层中广泛存在一种远离生成源区、结构紧致且稳定的次表层强化的SCVs,其动力学特征表现为:弱层结,低位涡中心,外围等密度线呈透镜状结构,温度、盐度或其他示踪量的性质与周围水体相比存在明显异常,内部核心流速较强。此类次表层SCVs对于海洋的水体运输、热盐环流和海洋生物生态环境均有重要影响。该文通过综述海洋次表层SCVs的结构及水文特征、识别方法、次表层SCVs在全球的分布、动力学机制及其重要影响等,展现次表层SCVs的研究进展,提出了未来研究的方向,包括研究的难点和全面认识海洋次表层SCVs尚待解决的问题。
中图分类号:
戈玉宇, 廖光洪. 海洋次表层SCVs的特征与成因机制:问题与进展[J]. 海洋学研究, 2023, 41(2): 45-60.
GE Yuyu, LIAO Guanghong. Characteristics and mechanism of ocean subsurface coherent eddies: Problems and progress[J]. Journal of Marine Sciences, 2023, 41(2): 45-60.
图1 当前几种常用观测手段所识别出的次表层SCVs [a:夏威夷海洋时间序列(HOT)航次在ALOHA观测站(22°45'N, 158°00'W)通过高分辨率采样获得由次表层(300~500 m)涡旋引起的位温(θ)、盐度(S)、溶解氧(O2)、浮力频率(N)和荧光剂(Fl)异常,图中黑色曲线为121航次观测剖面,彩色曲线为122航次观测剖面[14];b:Argo浮标(WMO ID 3900556)于2007年在南太平洋副热带东部区域观测的上层600 m时间-深度-盐度剖面图[15],图中黑色线为盐度等值线,白色线从上往下分别为位势密度(σθ=26.0,26.2,26.5,26.7和27.0 kg·m-3)等值线;c:2004年秋季由水下滑翔机观测到加利福尼亚潜流涡旋(Cuddy)引起的涩度异常剖面图[4],图中叠加了位势密度异常等值线(品红色线)、沿岸地转流流速等值线(黑色线为向极地方向、灰色线为向赤道方向,粗黑线是流速为0 m·s-1的等值线),位势密度和地转流流速等值线间隔分别为0.2 kg·m-3和0.02 m·s-1,高亮且粗的品红色线表示σθ=26.55 kg·m-3 等位势密度线,代表加利福尼亚潜流流核位置;d:北大西洋地震反射数据观测到的次表层地中海涡旋(Meddy)[16]。]
Fig.1 Subsurface coherent vortices identified by some observation methods [a: Potential temperature (θ), salinity (S), dissolved oxygen (O2), buoyancy frequency (N) and fluorescence (F1) profiles from ALOHA station (22°45'N, 158°00'W) during Hawaii Ocean Time-series (HOT) cruises 121 (black lines) and 122 (colored lines) [14]; b: Time-depth sections of salinity during 2007 in the upper 600 m from Argo float WMO ID 3900556, located in the eastern subtropical South Pacific Ocean[15], with the black line for salinity contours. Contours for σθ=26.0,26.2,26.5,26.7 and 27.0 kg·m-3 from top to battom are overlaid in white; c: Profile of anomalously spicy caused by California undercurrent eddy (Cuddy) observed by underwater glider from autumn 2004[4]. The figure superimposes the potential density anomaly (magenta contours), and alongshore geostrophic velocity (black contours poleward, gray contours equatorward, zero contour heavy line), The contour interval for potential density (velocity) is 0.2 kg·m-3 (0.02 m·s-1). The California undercurrent core isopycnal ofσθ=26.55 kg·m-3 is highlighted by the thick magenta line; d: Mediterranean eddy (Meddy) observed from the North Atlantic seismic reflection data[16].]
图2 再分析数据探测到的黑潮延伸体区域次表层SCVs结构 (图中的白色线代表混合层深度。)
Fig.2 Structure of subsurface vortex detected using reanalysis data in Kuroshio extend region (White lines indicate mixed layer depth.)
区域 | 温跃层内涡旋(ITEs) | 温跃层下涡旋(STEs) | 模态水涡旋 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
主要结论 | 代表性文献 | 涡旋名称 | 主要结论 | 代表性文献 | 主要结论 | 代表性文献 | |||||
印度洋 | 表层反气旋涡与热带气旋相互作用可能产生ITEs | GORDON et al[ | 阿拉伯 涡旋 | 阿拉伯海观测到的STEs在咸水横跨阿拉伯海的运输中具有重要作用 | VIC C et al[ MAREZ et al[ | ||||||
在马达加斯加东南部观测到ITEs | NAUW et al[ | ||||||||||
大西洋 | 综合大西洋西部永久性温跃层中等温透镜体的观测结果,解释其为孤立特征,首次提出ITEs,同时在马尾藻海中观测到ITEs | DUGAN et al[ | 地中海涡旋 | 地中海涡旋将高盐的地中海水输送到亚热带大西洋,影响环流、深对流、生物化学物质等 | MCDOWELL et al[ RICHARDSON et al[ BARBOSA et al[ BOSSE et al[ | 模态水涡旋在大西洋西北部被观测到,它们通过沿密度面输送和动量搅拌热盐、化学物质等影响海洋环流从而影响生态 | MCGILLICUDDY et al[ | ||||
在副热带北大西洋东边界上升流潜流中观测到ITEs,其内部和周围生产力很高 | PIETRI et al[ | 北大西洋东部的海洋低氧区的形成与模态水涡旋的孤立水团输运有关 | SCHüTTE et al[ | ||||||||
在墨西哥湾观测到的ITEs对墨西哥湾热量、盐度再分配有影响 | MEUNIER et al[ GULA et al[ | ||||||||||
太平洋 | 在日本海观测到ITEs,被认为是由冬季混合层水沿副极地锋南边缘的锋面汇聚和俯冲作用形成的 | GORDON et al[ | 加利福尼亚潜流涡旋 | 加利福尼亚潜流涡旋是加利福尼亚潜流温暖、高盐水横向输送机制之一 | GARFIELD et al[ | 北太平洋次表层低位涡水团的变化和涡旋密切相关 | WEN et al[ | ||||
南太平洋副热带回旋的赤道13 ℃水 | 反气旋,可能来自于东边界的极向潜流 | JOHNSON et al[ | |||||||||
黑潮延伸体区域观测到低位涡、高溶解氧的次表层SCVs,发现它们影响中层水的俯冲 | OKA et al[ | ||||||||||
利用HYCOM模拟日本海的ITEs,阐述了其生成的相关机制 | HOGAN et al[ | 黑潮延伸体涡旋 | 多次观测到STEs,其内部的热盐性质表明它们可能起源于黑潮上游 | MAXIMENKO et al[ OKA et al[ ZHANG et al[ | |||||||
ITEs不仅可以离岸运输水团,还能促进上升流区域的拓展 | HORMAZABAL et al[ | 棉兰老岛海岸涡旋 | 多次观测到STEs,它们对南北太平洋中层的混合有重要作用 | FIRING E et al[ CHIANG et al[ NAN et al[ ZHANG et al[ | |||||||
北冰洋 | 早期观测到次表层SCVs的地区之一,在格陵兰海、波弗特海、拉布拉多海都曾观测到,与深对流相关(D’ASARO[ |
表1 在全球观测发现的典型次表层SCVs
Tab.1 Typical subsurface coherent vortices found in the global ocean
区域 | 温跃层内涡旋(ITEs) | 温跃层下涡旋(STEs) | 模态水涡旋 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
主要结论 | 代表性文献 | 涡旋名称 | 主要结论 | 代表性文献 | 主要结论 | 代表性文献 | |||||
印度洋 | 表层反气旋涡与热带气旋相互作用可能产生ITEs | GORDON et al[ | 阿拉伯 涡旋 | 阿拉伯海观测到的STEs在咸水横跨阿拉伯海的运输中具有重要作用 | VIC C et al[ MAREZ et al[ | ||||||
在马达加斯加东南部观测到ITEs | NAUW et al[ | ||||||||||
大西洋 | 综合大西洋西部永久性温跃层中等温透镜体的观测结果,解释其为孤立特征,首次提出ITEs,同时在马尾藻海中观测到ITEs | DUGAN et al[ | 地中海涡旋 | 地中海涡旋将高盐的地中海水输送到亚热带大西洋,影响环流、深对流、生物化学物质等 | MCDOWELL et al[ RICHARDSON et al[ BARBOSA et al[ BOSSE et al[ | 模态水涡旋在大西洋西北部被观测到,它们通过沿密度面输送和动量搅拌热盐、化学物质等影响海洋环流从而影响生态 | MCGILLICUDDY et al[ | ||||
在副热带北大西洋东边界上升流潜流中观测到ITEs,其内部和周围生产力很高 | PIETRI et al[ | 北大西洋东部的海洋低氧区的形成与模态水涡旋的孤立水团输运有关 | SCHüTTE et al[ | ||||||||
在墨西哥湾观测到的ITEs对墨西哥湾热量、盐度再分配有影响 | MEUNIER et al[ GULA et al[ | ||||||||||
太平洋 | 在日本海观测到ITEs,被认为是由冬季混合层水沿副极地锋南边缘的锋面汇聚和俯冲作用形成的 | GORDON et al[ | 加利福尼亚潜流涡旋 | 加利福尼亚潜流涡旋是加利福尼亚潜流温暖、高盐水横向输送机制之一 | GARFIELD et al[ | 北太平洋次表层低位涡水团的变化和涡旋密切相关 | WEN et al[ | ||||
南太平洋副热带回旋的赤道13 ℃水 | 反气旋,可能来自于东边界的极向潜流 | JOHNSON et al[ | |||||||||
黑潮延伸体区域观测到低位涡、高溶解氧的次表层SCVs,发现它们影响中层水的俯冲 | OKA et al[ | ||||||||||
利用HYCOM模拟日本海的ITEs,阐述了其生成的相关机制 | HOGAN et al[ | 黑潮延伸体涡旋 | 多次观测到STEs,其内部的热盐性质表明它们可能起源于黑潮上游 | MAXIMENKO et al[ OKA et al[ ZHANG et al[ | |||||||
ITEs不仅可以离岸运输水团,还能促进上升流区域的拓展 | HORMAZABAL et al[ | 棉兰老岛海岸涡旋 | 多次观测到STEs,它们对南北太平洋中层的混合有重要作用 | FIRING E et al[ CHIANG et al[ NAN et al[ ZHANG et al[ | |||||||
北冰洋 | 早期观测到次表层SCVs的地区之一,在格陵兰海、波弗特海、拉布拉多海都曾观测到,与深对流相关(D’ASARO[ |
图5 水下滑翔机观测在地中海海域发现的温跃层下涡旋[3] [a:盐度剖面,图中白色等值线为等密度线;b:垂直于水下滑翔机测线的流速剖面(蓝色虚线框内为梯度风流速,蓝色虚线框外为地转流速),图中叠加了较大流速等值线(白色线)和平滑的等密度线(黑色线),蓝色虚线框为涡旋范围。]
Fig.5 Subthermocline eddies found in Mediterranean Sea by the underwater glider[3] [a: Salinity section with density contours in white; b: Cross-section velocities (Cyclostrophic within the blue box and geostrophic outside). The large current speed contours (white contours) are overlaid, and the black contours show the smoothed density field. Blue dashed box indicates eddy interior.]
图6 次表层模态水涡旋捕获流体的示意图[21] (图中颜色和黑色等值线表示等密度面上的位涡分布,黑色透明面为最外层封闭等位涡线的闭合面。)
Fig.6 Schematic diagram of trapped fluid by the subsurface modal water eddy[21] (The potential vorticity distributions on isopycnals are depicted by colored and black contours. The transparent black surface, defined by the outmost closed potential vorticity contours.)
图7 1997年8月—2020年1月基于Argo浮标识别出的所有次表层SCVs的分布[19] (红色点表示高涩度中心次表层SCVs,蓝色点表示低涩度中心次表层SCVs。)
Fig.7 Distribution of all subsurface coherent vortices detected from Argo buoys during August 1997 to January 2020[19] (In the figure, red dots are the subsurfacec coherent vortexes with the high spicy center, and blue dots are the subsurface coherent vortexes with the low spicy center.)
[1] | SWALLOW J C, WORTHINGTON L V. An observation of a deep countercurrent in the Western North Atlantic[J]. Deep Sea Research: 1953, 1961, 8(1): IN1-IN3. |
[2] | CHELTON D B, SCHLAX M G, SAMELSON R M, et al. Global observations of large oceanic eddies[J]. Geophysical Research Letters, 2007, 34(15): L15606. |
[3] |
BOSSE A, TESTOR P, MORTIER L, et al. Spreading of Levantine Intermediate Waters bysubmesoscale coherent vortices in the northwestern Mediterranean Sea as observed with gliders[J]. Journal of Geophysical Research: Oceans, 2015, 120(3): 1599-1622.
DOI URL |
[4] |
PELLAND N A, ERIKSEN C C, LEE C M. Subthermocline eddies over the Washington continental slope as observed by seagliders, 2003-09[J]. Journal of Physical Oceanography, 2013, 43(10): 2025-2053.
DOI URL |
[5] |
SHAPIRO G I, MESCHANOV S L. Distribution and spreading of Red Sea Water and salt lens formation in the northwest Indian Ocean[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1991, 38(1): 21-34.
DOI URL |
[6] |
LI C, ZHANG Z W, ZHAO W, et al. A statistical study on the subthermocline submesoscale eddies in the northwestern Pacific Ocean based on Argo data[J]. Journal of Geophysical Research: Oceans, 2017, 122(5): 3586-3598.
DOI URL |
[7] |
MCWILLIAMS J C. Submesoscale, coherent vortices in the ocean[J]. Reviews of Geophysics, 1985, 23(2): 165-182.
DOI URL |
[8] |
FRENGER I, BIANCHI D, STÜHRENBERG C, et al. Biogeochemical role of subsurface coherent eddies in the ocean: Tracer cannonballs, hypoxic storms, and microbial stewpots?[J]. Global Biogeochemical Cycles, 2018, 32(2): 226-249.
DOI URL |
[9] | CHAIGNEAU A, LE TEXIER M, ELDIN G, et al. Vertical structure of mesoscale eddies in the eastern South Pacific Ocean: A composite analysis from altimetry and Argo profiling floats[J]. Journal of Geophysical Research: Oceans, 2011, 116(C11): C11025. |
[10] | FLIERL G R. Particle motions in large-amplitude wave fields[J]. Geophysical & Astrophysical Fluid Dynamics, 1981, 18(1/2): 39-74. |
[11] | DONG C M, MCWILLIAMS J C, LIU Y, et al. Global heat and salt transports by eddy movement[J]. Nature Communications, 2014, 5(1): 1-6. |
[12] |
PIETRI A, KARSTENSEN J. Dynamical characterization of a low oxygen submesoscale coherent vortex in the eastern North Atlantic Ocean[J]. Journal of Geophysical Research: Oceans, 2018, 123(3): 2049-2065.
DOI URL |
[13] |
HORMAZABAL S, COMBES V, MORALES C E, et al. Intrathermocline eddies in the coastal transition zone off central Chile (31—41°S)[J]. Journal of Geophysical Research: Oceans, 2013, 118(10): 4811-4821.
DOI URL |
[14] |
LUKAS R, SANTIAGO-MANDUJANO F. Extreme water mass anomaly observed in the Hawaii Ocean time-series[J]. Geophysical Research Letters, 2001, 28(15): 2931-2934.
DOI URL |
[15] |
JOHNSON G C, MCTAGGART K E. Equatorial Pacific 13℃ water eddies in the eastern subtropical South Pacific Ocean[J]. Journal of Physical Oceanography, 2010, 40(1): 226-236.
DOI URL |
[16] | MÉNESGUEN C, HUA B L, CARTON X, et al. Arms winding around a meddy seen in seismic reflection data close to the Morocco coastline[J]. Geophysical Research Letters, 2012, 39(5): L05604. |
[17] |
OKUBO A. Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences[J]. Deep Sea Research and Oceanographic Abstracts, 1970, 17(3): 445-454.
DOI URL |
[18] |
WEISS J. The dynamics of enstrophy transfer in two-dimensional hydrodynamics[J]. Physica D: Nonlinear Phenomena, 1991, 48(2/3): 273-294.
DOI URL |
[19] |
MCCOY D, BIANCHI D, STEWART A L. Global observa-tions of submesoscale coherent vortices in the ocean[J]. Progress in Oceanography, 2020, 189: 102452.
DOI URL |
[20] | DUGAN J P, MIED R P, MIGNEREY P C, et al. Compact,intrathermocline eddies in the Sargasso sea[J]. Journal of Geophysical Research: Oceans, 1982, 87(C1): 385-393. |
[21] |
ZHANG Z G, ZHANG Y, WANG W. Three-compartment structure of subsurface-intensified mesoscale eddies in the ocean[J]. Journal of Geophysical Research: Oceans, 2017, 122(3): 1653-1664.
DOI URL |
[22] |
THOMAS L N. Formation of intrathermocline eddies at ocean fronts by wind-driven destruction of potential vorticity[J]. Dynamics of Atmospheres and Oceans, 2008, 45(3/4): 252-273.
DOI URL |
[23] |
GORDON A L, SHROYER E, MURTY V S N. An Intra-thermocline eddy and a tropical cyclone in the Bay of Bengal[J]. Scientific Reports, 2017, 7(1): 1-8.
DOI |
[24] | NAUW J J, VAN AKEN H M, LUTJEHARMS J R E, et al. Intrathermocline eddies in the Southern Indian Ocean[J]. Journal of Geophysical Research: Oceans, 2006, 111(C3): C03006. |
[25] |
VIC C, ROULLET G, CAPET X, et al. Eddy-topography interactions and the fate of the Persian Gulf Outflow[J]. Journal of Geophysical Research: Oceans, 2015, 120(10): 6700-6717.
DOI URL |
[26] | DE MAREZ C, CARTON X, CORRÉARD S, et al. Observations of a deep submesoscale cyclonic vortex in the Arabian Sea[J]. Geophysical Research Letters, 2020, 47(13): e2020GL087881. |
[27] |
MEUNIER T, TENREIRO M, PALLÀS-SANZ E, et al. Intrathermocline eddies embedded within an anticyclonic vortex ring[J]. Geophysical Research Letters, 2018, 45(15): 7624-7633.
DOI URL |
[28] |
GULA J, BLACIC T M, TODD R E. Submesoscale coherent vortices in the gulf stream[J]. Geophysical Research Letters, 2019, 46(5): 2704-2714.
DOI |
[29] |
MCDOWELL S E, ROSSBY H T. Mediterranean water: An intense mesoscale eddy off the Bahamas[J]. Science, 1978, 202(4372): 1085-1087.
PMID |
[30] |
RICHARDSON P L, BOWER A S, ZENK W. A census of Meddies tracked by floats[J]. Progress in Oceanography, 2000, 45(2): 209-250.
DOI URL |
[31] |
BARBOSA A A C, PELIZ Á, CARTON X. A census of Meddies in a long-term high-resolution simulation[J]. Progress in Oceanography, 2013, 116: 80-94.
DOI URL |
[32] |
BOSSE A, TESTOR P, HOUPERT L, et al. Scales and dynamics of Submesoscale Coherent Vortices formed by deep convection in the northwestern Mediterranean Sea[J]. Journal of Geophysical Research: Oceans, 2016, 121(10): 7716-7742.
DOI URL |
[33] |
BOSSE A, TESTOR P, MAYOT N, et al. Asubmesoscale coherent vortex in the Ligurian Sea: From dynamical barriers to biological implications[J]. Journal of Geophysical Research: Oceans, 2017, 122(8): 6196-6217.
DOI URL |
[34] |
MCGILLICUDDY JR D J, ANDERSON L A, BATES N R, et al. Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms[J]. Science, 2007, 316(5827): 1021-1026.
DOI PMID |
[35] |
SCHÜTTE F, KARSTENSEN J, KRAHMANN G, et al. Characterization of “dead-zone” eddies in the eastern tropical North Atlantic[J]. Biogeosciences, 2016, 13(20): 5865-5881.
DOI URL |
[36] |
GORDON A L, GIULIVI C F, LEE C M, et al. Japan/East Sea intrathermocline eddies[J]. Journal of Physical Oceanography, 2002, 32(6): 1960-1974.
DOI URL |
[37] |
GARFIELD N, COLLINS C A, PAQUETTE R G, et al. Lagrangian exploration of the California undercurrent, 1992-95[J]. Journal of Physical Oceanography, 1999, 29(4): 560-583.
DOI URL |
[38] | WEN Z B, HU H B, SONG Z Y, et al. Different influences of mesoscale oceanic eddies on the North Pacific subsurface low potential vorticity water mass between winter and summer[J]. Journal of Geophysical Research: Oceans, 2020, 125(1): e2019JC015333. |
[39] | HOGAN P J, HURLBURT H E. Why dointrathermocline eddies form in the Japan/East Sea? A modeling perspective[J]. Oceanography, 2006, 19(3): 134-143. |
[40] | MAXIMENKO N, YAMAGATA T. Submesoscale anomalies in the North Pacific subarctic front[J]. Journal of Geophysical Research: Oceans, 1995, 100(C9): 18459-18469. |
[41] | OKA E, TOYAMA K, SUGA T. Subduction of North Pacific central mode water associated with subsurface mesoscale eddy[J]. Geophysical Research Letters, 2009, 36(8): L08607. |
[42] |
ZHANG Z W, LI P L, XU L X, et al. Subthermocline eddies observed by rapid-sampling Argo floats in the subtropical northwestern Pacific Ocean in Spring 2014[J]. Geophysical Research Letters, 2015, 42(15): 6438-6445.
DOI URL |
[43] |
FIRING E, KASHINO Y, HACKER P. Energetic subther-mocline currents observed east of Mindanao[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2005, 52(3/4): 605-613.
DOI URL |
[44] |
CHIANG T L, QU T D. Subthermocline eddies in the western equatorial Pacific as shown by an eddy-resolving OGCM[J]. Journal of Physical Oceanography, 2013, 43(7): 1241-1253.
DOI URL |
[45] |
CHIANG T L, WU C R, QU T D, et al. Activities of 50-80 day subthermocline eddies near the Philippine coast[J]. Journal of Geophysical Research: Oceans, 2015, 120(5): 3606-3623.
DOI URL |
[46] |
NAN F, YU F, REN Q, et al. Isopycnal mixing of interhe-mispheric intermediate waters by subthermocline eddies east of the Philippines[J]. Scientific Reports, 2019, 9: 2957.
DOI |
[47] |
ZHANG L L, HUI Y C, QU T D, et al. Seasonal variability of subthermocline eddy kinetic energy east of the Philippines[J]. Journal of Physical Oceanography, 2021, 51(3): 685-699.
DOI URL |
[48] | D’ASARO E A. Generation of submesoscale vortices: A new mechanism[J]. Journal of Geophysical Research: Oceans, 1988, 93(C6): 6685-6693. |
[49] |
GASCARD J C, WATSON A J, MESSIAS M J, et al. Long-lived vortices as a mode of deep ventilation in the Greenland Sea[J]. Nature, 2002, 416(6880): 525-527.
DOI |
[50] |
LILLY J M, RHINES P B. Coherent eddies in the Labrador Sea observed from a mooring[J]. Journal of Physical Oceanography, 2002, 32(2): 585-598.
DOI URL |
[51] | DRILLET Y, BOURDALLÉ-BADIE R, SIEFRIDT L, et al. Meddies in the Mercator North Atlantic and Mediterranean Sea eddy-resolving model[J]. Journal of Geophysical Research: Oceans, 2005, 110(C3): C03016. |
[52] |
许丽晓, 刘秦玉. 海洋涡旋在模态水形成与输运中的作用[J]. 地球科学进展, 2021, 36(9):883-898.
DOI |
XU L X, LIU Q Y. Mesoscale eddy effects on subduction and transport of the North Pacific subtropical mode water[J]. Advances in Earth Science, 2021, 36(9): 883-898.
DOI |
|
[53] |
ZHU R C, CHEN Z H, ZHANG Z W, et al. Subthermocline eddies in the Kuroshio extension region observed by mooring arrays[J]. Journal of Physical Oceanography, 2021, 51(2): 439-455.
DOI URL |
[54] | KASAJIMA Y, OLSSON K A, JOHANNESSEN T, et al. A submesoscale coherent eddy in the Greenland Sea in 2003[J]. Journal of Geophysical Research: Oceans, 2006, 111(C7): C07013. |
[55] |
PROVENZALE A. Transport by coherent barotropic vortices[J]. Annual Review of Fluid Mechanics, 1999, 31: 55-93.
DOI URL |
[56] | 徐安琪. 西北太平洋次表层中尺度涡特征及其动力机制研究[D]. 青岛: 中国科学院大学(中国科学院海洋研究所), 2021. |
XU A Q. Research on characteristics and dynamic mechanism of subsurface eddies in the northwestern Pacific Ocean[D]. Qingdao: University of Chinese Academy of Sciences (Institute of Oceanography, Chinese Academy of Sciences), 2021. | |
[57] |
TESTOR P, GASCARD J C. Large-scale spreading of deep waters in the western Mediterranean Sea by submesoscale coherent eddies[J]. Journal of Physical Oceanography, 2003, 33(1): 75-87.
DOI URL |
[58] |
TESTOR P, GASCARD J C. Post-convection spreading phase in the Northwestern Mediterranean Sea[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2006, 53(5): 869-893.
DOI URL |
[59] |
COLLINS C A, MARGOLINA T, RAGO T A, et al. Looping RAFOS floats in the California Current system[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2013, 85: 42-61.
DOI URL |
[60] |
ALTABET M A, RYABENKO E, STRAMMA L, et al. An eddy-stimulated hotspot for fixed nitrogen-loss from the Peru oxygen minimum zone[J]. Biogeosciences, 2012, 9(12): 4897-4908.
DOI URL |
[61] |
ARÉVALO-MARTÍNEZ D L, KOCK A, LÖSCHER C R, et al. Influence of mesoscale eddies on the distribution of nitrous oxide in the eastern tropical South Pacific[J]. Biogeosciences, 2016, 13(4): 1105-1118.
DOI URL |
[62] | LEHAHN Y, D’OVIDIO F, LÉVY M, et al. Stirring of the northeast Atlantic spring bloom: A Lagrangian analysis based on multisatellite data[J]. Journal of Geophysical Research: Oceans, 2007, 112(C8): C08005. |
[63] | 张旭, 程琛, 刘艳. 西北太平洋副热带模态水形成区声传播特性分析[J]. 海洋学报, 2014, 36(9):94-102. |
ZHANG X, CHENG C, LIU Y. Acoustic propagation effect caused by subtropical mode water of northwestern Pacific[J]. Acta Oceanologica Sinica, 2014, 36(9): 94-102. | |
[64] | 李佳讯, 张韧, 陈奕德, 等. 海洋中尺度涡建模及其在水声传播影响研究中的应用[J]. 海洋通报, 2011, 30(1):37-46. |
LI J X, ZHANG R, CHEN Y D, et al. Ocean mesoscale eddy modeling and its application in studying the effect on underwater acoustic propagation[J]. Marine Science Bulletin, 2011, 30 (1): 37-46. | |
[65] |
JUNGCLAUS J H. A three-dimensional simulation of the formation of anticyclonic lenses (Meddies) by the instability of an intermediate depth boundary current[J]. Journal of Physical Oceanography, 1999, 29(7): 1579-1598.
DOI URL |
[66] |
GULA J, MOLEMAKER M J, MCWILLIAMS J C. Topographic vorticity generation,submesoscale instability and vortex street formation in the Gulf Stream[J]. Geophysical Research Letters, 2015, 42(10): 4054-4062.
DOI URL |
[67] | SPALL M A. Frontogenesis, subduction, and cross-front exchange at upper ocean fronts[J]. Journal of Geophysical Research: Oceans, 1995, 100(C2): 2543-2557. |
[68] |
KRUG M, SWART S, GULA J. Submesoscale cyclones in the Agulhas current[J]. Geophysical Research Letters, 2017, 44(1): 346-354.
DOI URL |
[69] | GULA J, MOLEMAKER M J, MCWILLIAMS J C. Topo-graphic generation of submesoscale centrifugal instability and energy dissipation[J]. Nature Communications, 2016, 7(1): 1-7. |
[70] | MCWILLIAMS J C. A perspective on submesoscale geophy-sical turbulence[C]//DRITSCHEL D. IUTAM symposium on turbulence in the atmosphere and oceans. Dordrecht: Springer, 2010: 131-141. |
[1] | 崔明慧, 涂俊彪, 孟令鹏, 郭兴杰, 苏妮, 范代读. 长江口南汇潮滩的波浪特征及其影响因素[J]. 海洋学研究, 2023, 41(2): 28-44. |
[2] | 佀祥城, 陈晓, 陈法锦, 金广哲, 师梓洋, 谢旭峰, 才华. 222Rn指示北部湾北部近海SGD输送的时空特征初探[J]. 海洋学研究, 2023, 41(2): 94-103. |
[3] | 李志超, 郭俊如, 宋军, 白志鹏, 富砚昭, 蔡宇, 王喜风. 东海黑潮周边中尺度涡的分布、运动规律以及生成机制[J]. 海洋学研究, 2022, 40(4): 1-10. |
[4] | 沈远, 陈相宇, 张希疆, 叶云, 倪云林. 波浪在三维圆形岛地形上的绕射研究[J]. 海洋学研究, 2022, 40(2): 62-68. |
[5] | 张奕璞, 于硕, 黄大吉, 周泽斌, . 海南新村潟湖潮汐、潮流特征及其对营养盐的影响[J]. 海洋学研究, 2022, 40(2): 69-82. |
[6] | 梁海萍, 李团结, 梁海燕, 高璐. 海口市风暴潮分布特征与影响因子探析[J]. 海洋学研究, 2022, 40(2): 83-92. |
[7] | 曾定勇, 宣基亮, 黄大吉, 等. 长江口海域潮汐和潮流的观测研究[J]. 海洋学研究, 2022, 40(1): 12-20. |
[8] | 张舒羽, 丁涛, 刘进宝, 等. 基于文献计量法的涌潮研究动态分析[J]. 海洋学研究, 2022, 40(1): 89-100. |
[9] | 何天祺, 管卫兵, 曹振轶, 鲍敏, 李嵩, 李雨. 象山港牛鼻山水道潮流场的高频地波雷达观测与分析[J]. 海洋学研究, 2021, 39(4): 109-122. |
[10] | 张家赢, 周锋, 田娣, 黄挺, . 苏门答腊岛西北海域中尺度涡源区特征与形成机制[J]. 海洋学研究, 2021, 39(3): 1-11. |
[11] | 崔子健, 梁楚进, 蔺飞龙, 金魏芳, 丁涛, 王隽. 安达曼海内孤立波的潜标观测分析研究[J]. 海洋学研究, 2020, 38(4): 16-25. |
[12] | 潘存鸿, 潘冬子, 郑君, 陈刚. 台风对钱塘江涌潮影响研究[J]. 海洋学研究, 2020, 38(4): 40-47. |
[13] | 张佳丽, 张安民, 孙朝辉, 张学峰, 张亮*1. 抗差Vondrak滤波方法在内孤立波提取中的应用研究[J]. 海洋学研究, 2020, 38(1): 1-8. |
[14] | 陈杰, 龚尚鹏, 官志鑫, 张竹, 谢振东, 雷佳欣, 彭浩. 根、茎、叶定量概化植物模型沿程不规则波消减实验[J]. 海洋学研究, 2019, 37(4): 48-59. |
[15] | 王隽, 杨劲松, 周礼英, 贺双颜, 贺治国, 肖清梅, 刘安国, 许明光. 基于多源卫星遥感数据的安达曼海及其邻近海域内波分布特征分析[J]. 海洋学研究, 2019, 37(3): 1-11. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||