海洋学研究 ›› 2023, Vol. 41 ›› Issue (2): 83-93.DOI: 10.3969/j.issn.1001-909X.2023.02.007
祝飞扬1,2(), 李怀明1,2,3,*(), 姚鹏飞1,2, 王潇1,2, 朱继浩1,2, 吕士辉4, 罗祎5, 周丽娜3, 刘禹维6, 唐煜童1,2
收稿日期:
2022-01-30
修回日期:
2022-04-27
出版日期:
2023-06-15
发布日期:
2023-07-27
通讯作者:
*李怀明(1977—),男,正高级工程师,主要从事深海矿产资源勘探、评价及成矿作用研究, E-mail:作者简介:
祝飞扬(1997—),湖北省武汉市人,主要从事深海矿产资源成矿作用研究,E-mail:ZhuFeiy@outlook.com。
基金资助:
ZHU Feiyang1,2(), LI Huaiming1,2,3,*(), YAO Pengfei1,2, WANG Xiao1,2, ZHU Jihao1,2, LÜ Shihui4, LUO Yi5, ZHOU Li’na3, LIU Yuwei6, TANG Yutong1,2
Received:
2022-01-30
Revised:
2022-04-27
Online:
2023-06-15
Published:
2023-07-27
摘要:
两相淋滤实验能够分离深海铁锰结核的水生矿物相和残留矿物相组分,为研究深海铁锰结核成矿作用以及古海洋环境提供直接信息。为了探讨两相淋滤实验在不同成因类型铁锰结核成矿作用研究中与全岩样品分析结果的差异,本文选取了西太平洋海山区和东太平洋CC区6个站位的铁锰结核样品进行了全岩样品矿物学和元素地球化学分析,利用两相淋滤实验分别提取了铁锰结核样品的水生矿物相和残留矿物相组分,并进行了元素地球化学分析。结果表明,不同类型铁锰结核的两相淋滤实验中残留相质量占比为14.0%~17.6%,变化较小,残留矿物相组分中Nb、Rb、Ta、Ti、Zr等元素含量较高。水生矿物相组分中的Co、Ni、Cu、Zn、Sr、REY元素含量及其比值变化与全岩样品基本一致。水生矿物相与残留矿物相中Ti、Nb、Sr含量的比值与全岩样品的Mn/Fe值呈较好的负相关关系,可作为研究铁锰结核成矿环境的指标参数。
中图分类号:
祝飞扬, 李怀明, 姚鹏飞, 王潇, 朱继浩, 吕士辉, 罗祎, 周丽娜, 刘禹维, 唐煜童. 两相淋滤实验在深海铁锰结核研究中的应用[J]. 海洋学研究, 2023, 41(2): 83-93.
ZHU Feiyang, LI Huaiming, YAO Pengfei, WANG Xiao, ZHU Jihao, LÜ Shihui, LUO Yi, ZHOU Li’na, LIU Yuwei, TANG Yutong. Application of two-phase leaching method in the study of ferromanganese nodule mineralization[J]. Journal of Marine Sciences, 2023, 41(2): 83-93.
样品编号 | 采样区域 | 经度 | 纬度 | 水深/m | 形态特征 |
---|---|---|---|---|---|
WPS-1 | 西太平洋海山区 | 159.49°E | 22.28°N | 4 132 | 球状结核 |
WPS-2 | 西太平洋海山区 | 153.88°E | 18.70°N | 5 706 | 球状结核 |
CCWP-1 | 东太平洋CC区 | 155.37°W | 9.72°N | 5 313 | 连生体状结核 |
CCWC-2 | 东太平洋CC区 | 155.00°W | 10.57°N | 5 159 | 菜花状结核 |
CCEC-1 | 东太平洋CC区 | 141.99°W | 11.42°N | 5 114 | 菜花状结核 |
CCEC-2 | 东太平洋CC区 | 121.05°W | 15.18°N | 4 073 | 菜花状结核 |
表1 样品与站位信息
Tab.1 Information of the samples and stations
样品编号 | 采样区域 | 经度 | 纬度 | 水深/m | 形态特征 |
---|---|---|---|---|---|
WPS-1 | 西太平洋海山区 | 159.49°E | 22.28°N | 4 132 | 球状结核 |
WPS-2 | 西太平洋海山区 | 153.88°E | 18.70°N | 5 706 | 球状结核 |
CCWP-1 | 东太平洋CC区 | 155.37°W | 9.72°N | 5 313 | 连生体状结核 |
CCWC-2 | 东太平洋CC区 | 155.00°W | 10.57°N | 5 159 | 菜花状结核 |
CCEC-1 | 东太平洋CC区 | 141.99°W | 11.42°N | 5 114 | 菜花状结核 |
CCEC-2 | 东太平洋CC区 | 121.05°W | 15.18°N | 4 073 | 菜花状结核 |
元素 | WPS-1 | WPS-2 | CCWP-1 | CCWC-2 | CCEC-1 | CCEC-2 |
---|---|---|---|---|---|---|
SiO2/% | 15.79 | 16.53 | 15.66 | 13.86 | 14.13 | 14.68 |
TiO2/% | 2.25 | 2.46 | 1.38 | 0.67 | 0.59 | 0.49 |
Al2O3/% | 3.96 | 5.65 | 5.43 | 5.26 | 5.15 | 4.70 |
Fe2O3/% | 24.74 | 26.36 | 16.39 | 8.88 | 7.44 | 9.17 |
MnO/% | 26.95 | 24.17 | 31.22 | 37.68 | 38.25 | 37.32 |
MgO/% | 2.11 | 2.04 | 2.93 | 3.81 | 3.74 | 3.19 |
CaO/% | 2.87 | 2.48 | 2.51 | 2.48 | 2.38 | 2.32 |
Na2O/% | 2.24 | 2.30 | 2.60 | 2.67 | 2.83 | 2.76 |
K2O/% | 0.87 | 0.93 | 1.09 | 1.05 | 1.05 | 1.13 |
P2O5/% | 0.76 | 0.67 | 0.55 | 0.51 | 0.51 | 0.42 |
SO3/% | 0.32 | 0.29 | 0.21 | 0.15 | 0.14 | 0.20 |
烧失量/% | 23.12 | 22.09 | 21.95 | 19.99 | 20.00 | 19.78 |
全岩分析 元素总和/% | 106 | 106 | 102 | 97 | 96 | 96 |
Co/10-6 | 3 691 | 2 711 | 2 462 | 2 030 | 1 986 | 1 854 |
Ni/10-6 | 3 620 | 2 020 | 8 248 | 12 246 | 13 948 | 12 364 |
Cu/10-6 | 1 895 | 1 702 | 6 055 | 10 090 | 12 362 | 9 146 |
Zn/10-6 | 579 | 429 | 796 | 1 483 | 1 277 | 1 611 |
Rb/10-6 | 18.36 | 13.73 | 17.61 | 19.67 | 20.09 | 25.96 |
Sr/10-6 | 1 124 | 966 | 811 | 587 | 562 | 677.53 |
Zr/10-6 | 651 | 587 | 534 | 280 | 301 | 304 |
Nb/10-6 | 9.84 | 8.65 | 30.81 | 16.11 | 27.06 | 19.64 |
Ta/10-6 | 0.06 | 0.11 | 0.23 | 0.11 | 0.26 | 0.26 |
Ba/10-6 | 1 415 | 1 304 | 1 275 | 1 441 | 2 109 | 3 382 |
Ce/10-6 | 1 365 | 1 038 | 596 | 226 | 245 | 267 |
Nd/10-6 | 232 | 161 | 188 | 111 | 117 | 126 |
Pb/10-6 | 1 114 | 672 | 651 | 341 | 371 | 396 |
REY/10-6 | 2 296 | 1 723 | 1 322 | 681 | 691 | 735 |
表2 全岩样品元素含量
Tab.2 Elements contents of the bulk samples
元素 | WPS-1 | WPS-2 | CCWP-1 | CCWC-2 | CCEC-1 | CCEC-2 |
---|---|---|---|---|---|---|
SiO2/% | 15.79 | 16.53 | 15.66 | 13.86 | 14.13 | 14.68 |
TiO2/% | 2.25 | 2.46 | 1.38 | 0.67 | 0.59 | 0.49 |
Al2O3/% | 3.96 | 5.65 | 5.43 | 5.26 | 5.15 | 4.70 |
Fe2O3/% | 24.74 | 26.36 | 16.39 | 8.88 | 7.44 | 9.17 |
MnO/% | 26.95 | 24.17 | 31.22 | 37.68 | 38.25 | 37.32 |
MgO/% | 2.11 | 2.04 | 2.93 | 3.81 | 3.74 | 3.19 |
CaO/% | 2.87 | 2.48 | 2.51 | 2.48 | 2.38 | 2.32 |
Na2O/% | 2.24 | 2.30 | 2.60 | 2.67 | 2.83 | 2.76 |
K2O/% | 0.87 | 0.93 | 1.09 | 1.05 | 1.05 | 1.13 |
P2O5/% | 0.76 | 0.67 | 0.55 | 0.51 | 0.51 | 0.42 |
SO3/% | 0.32 | 0.29 | 0.21 | 0.15 | 0.14 | 0.20 |
烧失量/% | 23.12 | 22.09 | 21.95 | 19.99 | 20.00 | 19.78 |
全岩分析 元素总和/% | 106 | 106 | 102 | 97 | 96 | 96 |
Co/10-6 | 3 691 | 2 711 | 2 462 | 2 030 | 1 986 | 1 854 |
Ni/10-6 | 3 620 | 2 020 | 8 248 | 12 246 | 13 948 | 12 364 |
Cu/10-6 | 1 895 | 1 702 | 6 055 | 10 090 | 12 362 | 9 146 |
Zn/10-6 | 579 | 429 | 796 | 1 483 | 1 277 | 1 611 |
Rb/10-6 | 18.36 | 13.73 | 17.61 | 19.67 | 20.09 | 25.96 |
Sr/10-6 | 1 124 | 966 | 811 | 587 | 562 | 677.53 |
Zr/10-6 | 651 | 587 | 534 | 280 | 301 | 304 |
Nb/10-6 | 9.84 | 8.65 | 30.81 | 16.11 | 27.06 | 19.64 |
Ta/10-6 | 0.06 | 0.11 | 0.23 | 0.11 | 0.26 | 0.26 |
Ba/10-6 | 1 415 | 1 304 | 1 275 | 1 441 | 2 109 | 3 382 |
Ce/10-6 | 1 365 | 1 038 | 596 | 226 | 245 | 267 |
Nd/10-6 | 232 | 161 | 188 | 111 | 117 | 126 |
Pb/10-6 | 1 114 | 672 | 651 | 341 | 371 | 396 |
REY/10-6 | 2 296 | 1 723 | 1 322 | 681 | 691 | 735 |
图7 基于δCe-Nd(a)和δCe-Y/Ho(b)的结核成因判别图 (蓝色投点为水生矿物相,橙色投点为全岩样品。)
Fig.7 The discriminative diagram with δCe-Nd and δCe-Y/Ho ratio (Blue spots represent the hydrogenetic mineral phases, orange spots represent the bulk samples.)
图9 铁锰结核全岩样品Mn/Fe比值与水生矿物相和残留矿物相组分元素含量比值的相关关系
Fig.9 The relevant diagram of Mn/Fe of bulk samples and element contents proportions between hydrogenetic and residual mineral phases
[1] | HEIN J R, KOSCHINSKY A, KUHN T. Deep-ocean polyme-tallic nodules as a resource for critical materials[J]. Nature Reviews Earth & Environment, 2020, 1(3): 158-169. |
[2] |
ZHONG Y, LIU Q S, CHEN Z, et al. Tectonic and paleo-ceanographic conditions during the formation of ferroman-ganese nodules from the northern South China Sea based on the high-resolution geochemistry, mineralogy and isotopes[J]. Marine Geology, 2019, 410: 146-163.
DOI URL |
[3] |
MARCUS M A, EDWARDS K J, GUEGUEN B, et al. Iron mineral structure, reactivity, and isotopic composition in a South Pacific Gyre ferromanganese nodule over 4 Ma[J]. Geochimica et Cosmochimica Acta, 2015, 171: 61-79.
DOI URL |
[4] |
ABOUCHAMI W, GOLDSTEIN S L, GAZER S J G, et al. Secular changes of lead and neodymium in central Pacific seawater recorded by a Fe-Mn crust[J]. Geochimica et Cosmochimica Acta, 1997, 61(18): 3957-3974.
DOI URL |
[5] |
ALBARÈDE F, GOLDSTEIN S L, DAUTEL D. The neody-mium isotopic composition of Manganese nodules from the Southern and Indian Oceans, the global oceanic neodymium budget, and their bearing on deep ocean circulation[J]. Geochimica et Cosmochimica Acta, 1997, 61(6): 1277-1291.
DOI URL |
[6] | KOSCHINSKY A, HALBACH P. Sequential leaching of marine ferromanganese precipitates: Genetic implications[J]. Geo-chimica et Cosmochimica Acta, 1995, 59(24): 5113-5132. |
[7] |
CHESTER R, HUGHES M J. A chemical technique for the separation of Ferro-Manganese minerals, carbonate minerals and adsorbed trace elements from pelagic sediments[J]. Chemical Geology, 1967, 2: 249-262.
DOI URL |
[8] |
CRONAN D S. Basal metalliferous sediments from the eastern Pacific[J]. Geological Society of America Bulletin, 1976, 87(6): 928.
DOI URL |
[9] |
KOSCHINSKY A, HEIN J R. Uptake of elements from seawater by ferromanganese crusts: Solid-phase associations and seawater speciation[J]. Marine Geology, 2003, 198(3/4): 331-351.
DOI URL |
[10] |
TAKEMATSU N. The incorporation of minor transition metals into marine Manganese nodules[J]. Journal of the Oceanographical Society of Japan, 1979, 35(5): 191-198.
DOI URL |
[11] |
MOORBY S A, CRONAN D S. The distribution of elements between co-existing phases in some marine ferromanganese-oxide deposits[J]. Geochimica et Cosmochimica Acta, 1981, 45(10): 1855-1877.
DOI URL |
[12] | PLANT A A. Abyssal archives: Unravelling the Late Neogene evolution of the Pacific Deep Western Boundary Current from the New Zealand sector of the Southern Ocean[D]. New Zealand: Victoria University of Wellington, 2015. |
[13] |
PUTEANUS D, HALBACH P. Correlation of Co concen-tration and growth rate—A method for age determination of ferromanganese crusts[J]. Chemical Geology, 1988, 69(1/2): 73-85.
DOI URL |
[14] |
HEIN J R, MIZELL K, KOSCHINSKY A, et al. Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: Comparison with land-based resources[J]. Ore Geology Reviews, 2013, 51: 1-14.
DOI URL |
[15] | KUHN T, WEGORZEWSKI A, RÜHLEMANN C, et al. Composition, formation, and occurrence of polymetallic nodules[M]// Deep-sea mining. Cham: Springer Interna-tional Publishing, 2017: 23-63. |
[16] |
WESSEL P, SANDWELL D, KIM S S. The global seamount census[J]. Oceanography, 2010, 23(1): 24-33.
DOI URL |
[17] |
TOZER B, SANDWELL D T, SMITH W H F, et al. Global bathymetry and topography at 15 Arc Sec: SRTM15+[J]. Earth and Space Science, 2019, 6(10): 1847-1864.
DOI |
[18] |
SETON M, MÜLLER R D, ZAHIROVIC S, et al. Global continental and ocean basin reconstructions since 200 Ma[J]. Earth-Science Reviews, 2012, 113(3/4): 212-270.
DOI URL |
[19] |
LI Z G, LI H M, HEIN J R, et al. A possible link between seamount sector collapse and Manganese nodule occurrence in the abyssal plains, NW Pacific Ocean[J]. Ore Geology Reviews, 2021, 138: 104378.
DOI URL |
[20] |
MENENDEZ A, JAMES R H, LICHTSCHLAG A, et al. Controls on the chemical composition of ferromanganese nodules in the Clarion-Clipperton Fracture Zone, eastern equatorial Pacific[J]. Marine Geology, 2019, 409: 1-14.
DOI URL |
[21] | 周怀阳, 吕文正, 周宁. 东北太平洋铁锰结核矿床地质模型[M]. 北京: 地质出版社, 2016. |
ZHOU H Y, LÜ W Z, ZHOU N. Geological model of polymetallic nodule deposits in the northeast Pacific Ocean[M]. Beijing: Geological Publishing House, 2016. | |
[22] | 金翔龙. 东太平洋铁锰结核矿带海洋地质与矿床特征[M]. 北京: 海洋出版社, 1997. |
JIN X L. Marine geology and deposit characteristics of polymetallic nodule ore belt in the East Pacific Ocean[M]. Beijing: China Ocean Press, 1997. | |
[23] | 李扬, 刘淑琴, 梁德华, 等. 多金属结核类型、结构构造及其矿物组成[M]. 武汉: 中国地质大学出版社, 1997. |
LI Y, LIU S Q, LIANG D H, et al. Types, structure and mineral composition of polymetallic nodules[M]. Wuhan: China University of Geosciences Press, 1997. | |
[24] | 钱江初, 初凤友, 冯旭文. 大洋铁锰结核中几种常见锰矿相的特征及其相关性[J]. 矿物学报, 2006, 26(2):152-158. |
QIAN J C, CHU F Y, FENG X W. The main Manganates in the polymetallic nodules and their correlations[J]. Acta Mineralogica Sinica, 2006, 26(2): 152-158. | |
[25] | 陈建林, 沈华悌, 韩喜球, 等. 太平洋多金属结核中铁锰矿物分析及成因研究[J]. 海洋学报, 1999, 21(2):56-64. |
CHEN J L, SHEN H T, HAN X Q, et al. Analysis for ferromanganese minerals of the Pacific Oceanic polymetallic nodules and the study for its origination[J]. Acta Oceano-logia Sinica, 1999, 21(2): 56-64. | |
[26] |
KUNZENDORF H, GWOZDZ R, GLASBY G P, et al. The distribution of rare earth elements in Manganese micronodules and sediments from the equatorial and southwest Pacific[J]. Applied Geochemistry, 1989, 4(2): 183-193.
DOI URL |
[27] | 姜学钧, 林学辉, 姚德, 等. 稀土元素在水成型海洋铁锰结壳中的富集特征及机制[J]. 中国科学:地球科学, 2011, 41(2):197-204. |
JIANG X J, LIN X H, YAO D, et al. Enrichment characteristics and mechanism of rare earth elements in water-formed marine iron-Manganese crusts[J]. Scientia Sinica: Terrae, 2011, 41(2): 197-204.
DOI URL |
|
[28] |
JOSSO P, PELLETER E, POURRET O, et al. A new discrimination scheme for oceanic ferromanganese deposits using high field strength and rare earth elements[J]. Ore Geology Reviews, 2017, 87: 3-15.
DOI URL |
[29] |
BAU M, SCHMIDT K, KOSCHINSKY A, et al. Discri-minating between different genetic types of marine Ferro-Manganese crusts and nodules based on rare earth elements and Yttrium[J]. Chemical Geology, 2014, 381: 1-9.
DOI URL |
[30] | 许东禹, 姚德, 梁宏峰, 等. 多金属结核形成的古海洋环境[M]. 北京: 地质出版社, 1994. |
XU D Y, YAO D, LIANG H F, et al. Paleo-marine environment for the formation of polymetallic nodules[M]. Beijing: Geological Publishing House, 1994. | |
[31] |
GLASBY G P, GWOZDZ R, KUNZENDORF H, et al. The distribution of rare earth and minor elements in manganese nodules and sediments from the equatorial and S.W. Pacific[J]. Lithos, 1987, 20(2): 97-113.
DOI URL |
[32] | GLASBY G P. Manganese: Predominant role of nodules and crusts[M] // SCHULZH D, ZABELM. Marine geochemistry. Berlin/Heidelberg: Springer-Verlag, 2006: 371-427. |
[33] | 郭世勤, 吴必豪, 卢海龙, 等. 多金属结核和沉积物的地球化学研究[M]. 北京: 地质出版社, 1994. |
GUO S Q, WU B H, LU H L, et al. Geochemical studies of polymetallic nodules and sediments[M]. Beijing: Geological Publishing House, 1994. |
[1] | 刘莉萍, 初凤友, 郭磊, 李小虎. 海底天然气水合物及冷泉流体渗漏的原位观测技术[J]. 海洋学研究, 2023, 41(1): 26-44. |
[2] | 陆怡, 初凤友, 董彦辉, 朱志敏, 朱继浩, 鲁江姑. 南海东北部陆坡结核成因及对冷泉活动的指示[J]. 海洋学研究, 2020, 38(2): 16-25. |
[3] | 王海峰, 赖佩欣, 邓希光, 王汾连, 杨永, 邓义楠, 何高文. 马里亚纳海沟挑战者深渊初期多金属氧化物的矿物学、地球化学特征及其成因环境研究[J]. 海洋学研究, 2019, 37(1): 21-29. |
[4] | 庄丹丹, 初凤友, 朱继浩. 东太平洋多金属结核富钡镁锰矿细脉蛋白石层的成因机制[J]. 海洋学研究, 2015, 33(2): 19-29. |
[5] | 杨睿, 阎贫, 吴能友, 乔少华, 苏明, 梁金强, 郭攀, 霍元媛. 南海神狐水合物钻探区不同形态流体地震反射特征与水合物产出的关系[J]. 海洋学研究, 2014, 32(4): 19-26. |
[6] | 耿明会, 关永贤, 宋海斌, 陈江欣. 南海北部天然气渗漏系统地球物理初探[J]. 海洋学研究, 2014, 32(2): 46-52. |
[7] | 刘晓瑜, 陈义兰, 路波, 文武, 董立峰. 北黄海长山群岛外海底环状微洼地地貌特征[J]. 海洋学研究, 2013, 31(1): 59-65. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||