海洋学研究 ›› 2023, Vol. 41 ›› Issue (2): 94-103.DOI: 10.3969/j.issn.1001-909X.2023.02.008
佀祥城1,2(), 陈晓1,2, 陈法锦1,2, 金广哲1,2,*(), 师梓洋1,2, 谢旭峰1,2, 才华3
收稿日期:
2022-03-30
修回日期:
2022-10-18
出版日期:
2023-06-15
发布日期:
2023-07-27
通讯作者:
*金广哲(1982—),男,副教授,主要从事海底地下水排泄对近海环境和营养盐迁移转化的影响方面的研究, E-mail:作者简介:
佀祥城(2000—),男,河南省濮阳市人,主要从事近海陆架区海水-地下水交互方面的研究,E-mail:1532522589@qq.com。
基金资助:
SI Xiangcheng1,2(), CHEN Xiao1,2, CHEN Fajin1,2, JIN Guangzhe1,2,*(), SHI Ziyang1,2, XIE Xufeng1,2, CAI Hua3
Received:
2022-03-30
Revised:
2022-10-18
Online:
2023-06-15
Published:
2023-07-27
摘要:
放射性同位素氡222 (222Rn) 是来源于地层中铀衰变生成的惰性元素。由于其性质稳定,容易测量且在地下水和地表水中活度差异显著,近年来被用作示踪剂广泛应用在海底地下水排泄(submarine groundwater discharge,SGD)的研究中。本文选取北部湾北部海水的222Rn活度作为研究对象,通过2021年8月—9月以及12月—次年1月在北部湾北部海域的两个航次采样,分析了北部湾北部海域水体222Rn的空间分布和季节性变化特征,并结合222Rn的质量平衡模型,估算了北部湾北部海域的SGD通量。结果表明,222Rn分布特征受到季节变化和陆源SGD过程的显著影响,冬季222Rn活度的平均值与夏季相比减少了约40%。夏季底层水222Rn活度较高,断面特征显示SGD过程明显且多集中于研究区北部,而冬季底层水222Rn活度较低,断面特征显示SGD过程较弱。通过构建222Rn质量平衡模型,估算出北部湾北部海域夏季与冬季SGD速率分别为4.16 cm·d-1和2.88 cm·d-1。夏季SGD速率明显高于冬季,且夏季以近岸SGD过程为主,冬季以离岸SGD为主。北部湾北部海域存在着明显的SGD过程,而且由于该区域被陆地和岛屿三面环绕,SGD过程很可能是陆源物质向近岸海域输送的重要自然途径。
中图分类号:
佀祥城, 陈晓, 陈法锦, 金广哲, 师梓洋, 谢旭峰, 才华. 222Rn指示北部湾北部近海SGD输送的时空特征初探[J]. 海洋学研究, 2023, 41(2): 94-103.
SI Xiangcheng, CHEN Xiao, CHEN Fajin, JIN Guangzhe, SHI Ziyang, XIE Xufeng, CAI Hua. A preliminary investigation on the spatial and temporal distribution of submarine groundwater discharge in the northern Beibu Gulf as indicated by 222Rn activities[J]. Journal of Marine Sciences, 2023, 41(2): 94-103.
研究区 | SGD速率/(cm·d-1) | 参考文献 |
---|---|---|
象山港 | 0.23~0.69 | WU et al[ |
海南岛西部 | 0.49~1.5 | SU et al[ |
莱州湾 | 6.64 | ZHANG et al[ |
吐露港 | 2.66~5.42 | LUO et al[ |
大亚湾 | 28~31 | WANG et al[ |
五缘湾 | 9~29 | 刘花台等[ |
北部湾北部 | 2.88~4.16 | 本研究 |
表1 本研究与我国近海区域SGD速率的比较
Tab.1 Comparison of SGD rates from this study with those from other coastal regions of China
研究区 | SGD速率/(cm·d-1) | 参考文献 |
---|---|---|
象山港 | 0.23~0.69 | WU et al[ |
海南岛西部 | 0.49~1.5 | SU et al[ |
莱州湾 | 6.64 | ZHANG et al[ |
吐露港 | 2.66~5.42 | LUO et al[ |
大亚湾 | 28~31 | WANG et al[ |
五缘湾 | 9~29 | 刘花台等[ |
北部湾北部 | 2.88~4.16 | 本研究 |
[1] |
BOKUNIEWICZ H. Groundwater seepage into Great South Bay, New York[J]. Estuarine and Coastal Marine Science, 1980, 10(4): 437-444.
DOI URL |
[2] |
MOORE W S. Large groundwater inputs to coastal waters revealed by 226Ra enrichments[J]. Nature, 1996, 380(6575): 612-614.
DOI |
[3] |
BURNETT W C, BOKUNIEWICZ H, HUETTEL M, et al. Groundwater and pore water inputs to the coastal zone[J]. Biogeochemistry, 2003, 66(1): 3-33.
DOI URL |
[4] |
MOOSDORF N, OEHLER T. Societal use of fresh submarine groundwater discharge: An overlooked water resource[J]. Earth-Science Reviews, 2017, 171: 338-348.
DOI URL |
[5] |
WANG X J, LI H L, YANG J Z, et al. Nutrient inputs through submarine groundwater discharge in an embayment: A radon investigation in Daya Bay, China[J]. Journal of Hydrology, 2017, 551: 784-792.
DOI URL |
[6] |
WASKA H, KIM G. Submarine groundwater discharge (SGD) as a main nutrient source for benthic and water-column primary production in a large intertidal environment of the Yellow Sea[J]. Journal of Sea Research, 2011, 65(1): 103-113.
DOI URL |
[7] |
LECHER A L, MACKEY K, KUDELA R, et al. Nutrient loading through submarine groundwater discharge and phytoplankton growth in Monterey Bay, CA[J]. Environmental Science & Technology, 2015, 49(11): 6665-6673.
DOI URL |
[8] |
ATKINS M L, SANTOS I R, RUIZ-HALPERN S, et al. Carbon dioxide dynamics driven by groundwater discharge in a coastal floodplain creek[J]. Journal of Hydrology, 2013, 493: 30-42.
DOI URL |
[9] |
OH Y H, LEE Y W, PARK S R, et al. Importance of dissolved organic carbon flux through submarine groundwater discharge to the coastal ocean: Results from Masan Bay, the southern coast of Korea[J]. Journal of Marine Systems, 2017, 173: 43-48.
DOI URL |
[10] |
PORUBSKY W P, WESTON N B, MOORE W S, et al. Dynamics of submarine groundwater discharge and associated fluxes of dissolved nutrients, carbon, and trace gases to the coastal zone (Okatee River Estuary, South Carolina)[J]. Geochimica et Cosmochimica Acta, 2014, 131: 81-97.
DOI URL |
[11] |
PROUTY N G, SWARZENSKI P W, FACKRELL J K, et al. Groundwater-derived nutrient and trace element transport to a nearshore Kona coral ecosystem: Experimental mixing model results[J]. Journal of Hydrology: Regional Studies, 2017, 11: 166-177.
DOI URL |
[12] |
PENG T, LIU J N, YU X Q, et al. Assessment of submarine groundwater discharge (SGD) and associated nutrient subsidies to Xiangshan Bay (China), an aquaculture area[J]. Journal of Hydrology, 2022, 610: 127795.
DOI URL |
[13] |
BURNETT W C, AGGARWAL P K, AURELI A, et al. Quantifying submarine groundwater discharge in the coastal zone via multiple methods[J]. Science of the Total Environment, 2006, 367(2/3): 498-543.
DOI URL |
[14] |
HUSSAIN N, CHURCH T M, KIM G. Use of 222Rn and 226Ra to trace groundwater discharge into the Chesapeake Bay[J]. Marine Chemistry, 1999, 65(1/2): 127-134.
DOI URL |
[15] |
VARMA S, TURNER J, UNDERSCHULTZ J. Estimation of submarine groundwater discharge into Geographe Bay, Bunbury, Western Australia[J]. Journal of Geochemical Exploration, 2010, 106(1/2/3): 197-210.
DOI URL |
[16] |
GARCIA-ORELLANA J, RODELLAS V, TAMBORSKI J, et al. Radium isotopes as submarine groundwater discharge (SGD) tracers: Review and recommendations[J]. Earth-Science Reviews, 2021, 220: 103681.
DOI URL |
[17] |
MOORE W S. The effect of submarine groundwater discharge on the ocean[J]. Annual Review of Marine Science, 2010, 2: 59-88.
PMID |
[18] | 李海龙, 王学静. 海底地下水排泄研究回顾与进展[J]. 地球科学进展, 2015, 30(6):636-646. |
LI H L, WANG X J. Submarine groundwater discharge: A review[J]. Advances in Earth Science, 2015, 30(6): 636-646. | |
[19] |
CABLE J E, BURNETT W C, CHANTON J P, et al. Estimating groundwater discharge into the northeastern Gulf of Mexico using radon-222[J]. Earth and Planetary Science Letters, 1996, 144(3/4): 591-604.
DOI URL |
[20] |
SU N, BURNETT W C, MACINTYRE H L, et al. Natural Radon and Radium isotopes for assessing groundwater discharge into Little Lagoon, AL: Implications for harmful algal blooms[J]. Estuaries and Coasts, 2014, 37(4): 893-910.
DOI URL |
[21] | 温廷宇. 基于氡放射性同位素示踪海底地下水排放:以桑沟湾、象山为例[D]. 上海: 华东师范大学, 2013. |
WEN T Y. Estimating submarine groundwater discharge via radon radioisotope: The case of Sanggou Bay and Xiangshan, China[D]. Shanghai: East China Normal University, 2013. | |
[22] |
MENG F P, WANG Z F, CHENG F L, et al. The assessment of environmental pollution along the coast of Beibu Gulf, northern South China Sea: An integrated biomarker approach in the clam Meretrix meretrix[J]. Marine Environmental Research, 2013, 85: 64-75.
DOI PMID |
[23] |
LIU Z H, YU J H, ZHANG D. Study on low-carbon building ecological city construction in harmonious Beibu Gulf culture[J]. Procedia Environmental Sciences, 2011, 10(Part C): 1881-1886.
DOI URL |
[24] |
WANG X L, SU K J, CHEN X G, et al. Submarine groundwater discharge-driven nutrient fluxes in a typical mangrove and aquaculture bay of the Beibu Gulf, China[J]. Marine Pollution Bulletin, 2021, 168: 112500.
DOI URL |
[25] | 黎树式, 黄鹄, 戴志军. 近60年来广西北部湾气候变化及其适应研究[J]. 海洋开发与管理, 2017, 34(4):50-55. |
LI S S, HUANG H, DAI Z J. Climate change and its adaptation in Beibu Gulf of Guangxi in recent 60 years[J]. Ocean Development and Management, 2017, 34(4): 50-55. | |
[26] | 陈波, 许铬本, 牙韩争, 等. 入海径流扩散对北部湾北部环流的影响[J]. 海洋湖沼通报, 2020(2):43-54. |
CHEN B, XU G B, YA H Z, et al. Effect of the runoff diffusion on the circulation in the northern Beibu Gulf[J]. Transactions of Oceanology and Limnology, 2020(2): 43-54. | |
[27] | 乔延龙, 林昭进. 北部湾地形、底质特征与渔场分布的关系[J]. 海洋湖沼通报, 2007(S1):232-238. |
QIAO Y L, LIN Z J. The relationship between the main features of landform, the distritubiton of bottom sediment and fishery distribution[J]. Transactions of Oceanology and Limnology, 2007(S1): 232-238. | |
[28] |
BURNETT W C, DULAIOVA H. Estimating the dynamics of groundwater input into the coastal zone via continuous radon-222 measurements[J]. Journal of Environmental Radioactivity, 2003, 69(1/2): 21-35.
DOI URL |
[29] | 郭占荣, 马志勇, 章斌, 等. 采用222Rn示踪胶州湾的海底地下水排泄及营养盐输入[J]. 地球科学, 2013, 38(5):1073-1080,1090. |
GUO Z R, MA Z Y, ZHANG B, et al. Tracing submarine groundwater discharge and associated nutrient fluxes into Jiaozhou Bay by continuous 222Rn measurements[J]. Earth Science, 2013, 38(5): 1073-1080, 1090. | |
[30] |
ZHU A P, SAITO M, ONODERA S I, et al. Evaluation of the spatial distribution of submarine groundwater discharge in a small island scale using the222Rn tracer method and comparative modeling[J]. Marine Chemistry, 2019, 209: 25-35.
DOI URL |
[31] |
SANTOS I R, PETERSON R N, EYRE B D, et al. Significant lateral inputs of fresh groundwater into a stratified tropical estuary: Evidence from radon and radium isotopes[J]. Marine Chemistry, 2010, 121(1/2/3/4): 37-48.
DOI URL |
[32] |
DIMOVA N T, BURNETT W C, CHANTON J P, et al. Application of radon-222 to investigate groundwater discharge into small shallow lakes[J]. Journal of Hydrology, 2013, 486: 112-122.
DOI URL |
[33] | 刘花台, 郭占荣. 海底地下水排泄的研究进展[J]. 地球科学进展, 2014, 29(7):774-785. |
LIU H T, GUO Z R. A review on submarine groundwater discharge[J]. Advances in Earth Science, 2014, 29(7): 774-785. | |
[34] |
TSE K C, JIAO J J. Estimation of submarine groundwater discharge in Plover Cove, Tolo Harbour, Hong Kong by 222Rn[J]. Marine Chemistry, 2008, 111(3/4): 160-170.
DOI URL |
[35] |
WU Z J, ZHOU H Y, ZHANG S, et al. Using222Rn to estimate submarine groundwater discharge (SGD) and the associated nutrient fluxes into Xiangshan Bay, East China Sea[J]. Marine Pollution Bulletin, 2013, 73(1): 183-191.
DOI URL |
[36] | 袁晓婕, 郭占荣, 马志勇, 等. 基于222Rn质量平衡模型的胶州湾海底地下水排泄[J]. 地球学报, 2015, 36(2):237-244. |
YUAN X J, GUO Z R, MA Z Y, et al. The evaluation of submarine groundwater discharge in Jiaozhou Bay based on 222Rn mass balance[J]. Acta Geoscientica Sinica, 2015, 36(2): 237-244. | |
[37] | 张艳. 氡同位素示踪莱州湾海底地下水排泄[D]. 北京: 中国地质大学, 2016. |
ZHANG Y. Estimation of submarine groundwater discharge into Laizhou Bay, China using 222Rn[D]. Beijing: China University of Geosciences, 2016. | |
[38] | 黄怡萌. 氡同位素示踪渤海湾西部海底地下水排泄[D]. 北京: 中国地质大学, 2019. |
HUANG Y M. Evaluation of submarine groundwater discharge into the west of Bohai Bay, China using 222Rn[D]. Beijing: China University of Geosciences, 2019. | |
[39] | PETERSON R N, BURNETT W C, TANIGUCHI M, et al. Radon and radium isotope assessment of submarine groundwater discharge in the Yellow River delta, China[J]. Journal of Geophysical Research: Oceans, 2008, 113(C9): C09021. |
[40] |
SWARZENSKI P W, BURNETT W C, GREENWOOD W J, et al. Combined time-series resistivity and geochemical tracer techniques to examine submarine groundwater discharge at Dor Beach, Israel[J]. Geophysical Research Letters, 2006, 33(24): L24405.
DOI URL |
[41] |
SU N, DU J Z, MOORE W S, et al. An examination of groundwater discharge and the associated nutrient fluxes into the estuaries of eastern Hainan Island, China using 226Ra[J]. Science of the Total Environment, 2011, 409(19): 3909-3918.
DOI URL |
[42] |
ZHANG Y, LI H L, WANG X J, et al. Estimation of submarine groundwater discharge and associated nutrient fluxes in eastern Laizhou Bay, China using 222Rn[J]. Journal of Hydrology, 2016, 533: 103-113.
DOI URL |
[43] |
LUO X, JIAO J J. Submarine groundwater discharge and nutrient loadings in Tolo Harbor, Hong Kong using multiple geotracer-based models, and their implications of red tide outbreaks[J]. Water Research, 2016, 102: 11-31.
DOI PMID |
[44] | 刘花台, 郭占荣, 袁晓婕, 等. 用镭同位素评价海水滞留时间及海底地下水排泄[J]. 地球科学, 2013, 38(3):599-606. |
LIU H T, GUO Z R, YUAN X J, et al. Utility of Radium isotopes for evaluating residence time and submarine groundwater discharge[J]. Earth Science, 2013, 38(3): 599-606. | |
[45] | 张艳, 王学静, 薛岩, 等. 中国近岸海底地下水排泄(SGD)研究进展[J]. 中国科学:地球科学, 2022, 52(11):2139-2151. |
ZHANG Y, WANG X J, XUE Y, et al. Advances in the study of submarine groundwater discharge (SGD) in China[J]. Scientia Sinica: Terrae, 2022, 52(11): 2139-2151.
DOI URL |
|
[46] |
MOORE W S, SARMIENTO J L, KEY R M. Submarine groundwater discharge revealed by 228Ra distribution in the upper Atlantic Ocean[J]. Nature Geoscience, 2008, 1(5): 309-311.
DOI |
[47] |
KWON E Y, KIM G, PRIMEAU F, et al. Global estimate of submarine groundwater discharge based on an observationally constrained radium isotope model[J]. Geophysical Research Letters, 2014, 41(23): 8438-8444.
DOI URL |
[48] |
XU B C, BURNETT W, DIMOVA N, et al. Hydrodynamics in the Yellow River Estuary via radium isotopes: Ecological perspectives[J]. Continental Shelf Research, 2013, 66: 19-28.
DOI URL |
[49] |
CABRAL A, SUGIMOTO R, TANIGUCHI M, et al. Fresh and saline submarine groundwater discharge as sources of carbon and nutrients to the Japan Sea[J]. Marine Chemistry, 2023, 249: 104209.
DOI URL |
[1] | 马莉, 刘茜, 何会军, 彭辉, 张劲, . 大沽河流域地下水中稀土元素的地球化学特征[J]. 海洋学研究, 2021, 39(2): 33-42. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||