基于无人机多光谱遥感的海岛植被碳储量估算研究——以洞头大竹峙岛为例

谢家颀, 张钊, 周稳, 王金旺, 陈雅慧

海洋学研究 ›› 2023, Vol. 41 ›› Issue (4) : 84-93.

PDF(3792 KB)
PDF(3792 KB)
海洋学研究 ›› 2023, Vol. 41 ›› Issue (4) : 84-93. DOI: 10.3969/j.issn.1001-909X.2023.04.008
研究报道

基于无人机多光谱遥感的海岛植被碳储量估算研究——以洞头大竹峙岛为例

作者信息 +

Research of carbon storage assessment of island vegetation based on UAV multispectral remote sensing:A case study of Dazhuzhi Island in Dongtou

Author information +
文章历史 +

摘要

以温州市洞头区大竹峙岛为研究区,采用无人机搭载多光谱传感器获取海岛高分辨率遥感影像,通过比选光谱最佳波段组合,以监督分类方法将植被类型分成乔木、灌丛和草丛,分类精度为99.72%,Kappa系数为0.995 4。通过深度卷积神经网络对乔木和灌丛进行单木分割(精确率为0.79),获得各优势种的空间分布,结合生物量方程反演各乔木、灌丛优势种的生物量空间分布(乔木R2=0.97,灌丛R2=0.99),其中3个灌丛优势种(天仙果、野梧桐、滨柃)的生物量反演方程通过现场采样构建,其余乔木和灌丛优势种生物量反演方程来自文献。根据优势种的生物量和空间分布,计算得到大竹峙岛的乔木碳储量为300.36 t,灌丛碳储量为47.59 t。通过归一化植被指数反演草丛生物量空间分布(R2=0.99),结合根据实测数据构建的草丛优势种(中华结缕草)生物量方程,计算得到大竹峙岛草丛碳储量为21.59 t。

Abstract

Taking Dazhuzhi Island (Dongtou, Wenzhou) as the research area, UAV equipped with multispectral sensors was used to acquire high-resolution remote sensing images, the optimal spectral band combination was selected to classify the island vegetation, and the vegetation types was divided into arbors, shrubs and herbs by supervised classification. The accuracy of vegetation classification was 99.72%, and the Kappa coefficient was 0.995 4. The spatial distribution of dominant species of arbors and shrubs was obtained by using the deep convolutional neural network (the precision rate was 0.79), and combined with the biomass equations, the spatial distribution of the biomass of dominant species of arbors and shrubs was inversed (arbors’ R2=0.97, shrubs’ R2=0.99). The biomass inversion equations of 3 shrub dominant species (Ficus erecta, Mallotus japonicas, and Eurya emarginata) were constructed by field sampling, and the other dominant species biomass inversion equations were obtained from literature. Based on the biomass and spatial distribution of dominant species, the carbon storage of arbors and shrubbys was 300.36 t and 47.59 t, respectively. Using normalized difference vegetation index (NDVI) to invert the spatial distribution of herb biomass (R2=0.99), combined with the biomass equation of the dominant herb species (Zoysia sinica) constructed from the measured data, the carbon storage of herbs was 21.59 t on Dazhuzhi Island.

关键词

海岛 / 植被碳储量 / 无人机 / 多光谱影像

Key words

island / vegetation carbon storage / unmanned aerial vehicle (UAV) / multispectral remotely sensed image

引用本文

导出引用
谢家颀, 张钊, 周稳, . 基于无人机多光谱遥感的海岛植被碳储量估算研究——以洞头大竹峙岛为例[J]. 海洋学研究. 2023, 41(4): 84-93 https://doi.org/10.3969/j.issn.1001-909X.2023.04.008
XIE Jiaqi, ZHANG Zhao, ZHOU Wen, et al. Research of carbon storage assessment of island vegetation based on UAV multispectral remote sensing:A case study of Dazhuzhi Island in Dongtou[J]. Journal of Marine Sciences. 2023, 41(4): 84-93 https://doi.org/10.3969/j.issn.1001-909X.2023.04.008
中图分类号: Q948   

参考文献

[1]
2017年海岛统计调查公报[R]. 北京: 自然资源部, 2018.
2017 bulletin of island statistical survey[R]. Beijing: Ministry of Natural Resources, 2018.
[2]
王晓丽, 王嫒, 石洪华, 等. 海岛陆地生态系统固碳估算方法[J]. 生态学报, 2014, 34(1):88-96.
WANG X L, WANG A, SHI H H, et al. Discussion of carbon sequestration estimates in the island terrestrial ecosystems[J]. Acta Ecologica Sinica, 2014, 34(1): 88-96.
[3]
池毓锋, 赖日文, 余莉莉, 等. 平潭岛木麻黄碳储量遥感估测[J]. 森林与环境学报, 2016, 36(4):461-466.
CHI Y F, LAI R W, YU L L, et al. Remote sensing estimation of Casuarina equisetifolia carbon storage in Pingtan Island[J]. Journal of Forest and Environment, 2016, 36(4): 461-466.
[4]
魏艳艳. 2009-2018年崇明岛主要土地利用类型植被碳储量变化及其驱动力分析[D]. 上海: 上海师范大学, 2020.
WEI Y Y. Analysis on the change and driving force of carbon storage of main land use types in Chongming Island from 2009 to 2018[D]. Shanghai: Shanghai Normal University, 2020.
[5]
PASCUAL A, GIARDINA C P, SELMANTS P C, et al. A new remote sensing-based carbon sequestration potential index (CSPI): A tool to support land carbon management[J]. Forest Ecology and Management, 2021, 494: 119343.
[6]
江萍. 基于无人机高光谱影像的防护林树种分类研究[D]. 石河子: 石河子大学, 2022.
JIANG P. Research on tree species classification of shelterbelt based on UAV hyperspectral image[D]. Shihezi: Shihezi University, 2022.
[7]
赵晓宇. 无人机影像空间分辨率和波谱信息对湿地地物分类的影响研究[D]. 桂林: 桂林理工大学, 2022.
ZHAO X Y. Effects of UAV image resolution and spectral information on wetland feature classification[D]. Guilin: Guilin University of Technology, 2022.
[8]
唐佳佳, 董婧, 杨永均, 等. 联合LiDAR和高光谱数据反演矿山生态修复区植被地上碳储量[J]. 金属矿山, 2023(1):65-72.
TANG J J, DONG J, YANG Y J, et al. Inversion of aboveground carbon stock of vegetation in mine ecological restoration area by combining LiDAR and hyperspectral data[J]. Metal Mine, 2023(1): 65-72.
[9]
吴新宇, 廖廓, 李勇波, 等. 基于无人机LiDAR数据的马尾松碳储量估测[J]. 海峡科学, 2023(2):43-49.
WU X Y, LIAO K, LI Y B, et al. Carbon storage estimation of Pinus massoniana based on UAV LiDAR data[J]. Straits Science, 2023(2): 43-49.
[10]
黄昕晰. 基于无人机影像与Mask R-CNN的城市单木检测与参数提取研究[D]. 杭州: 浙江农林大学, 2020.
HUANG X X. Research on urban single tree detection and parameters extraction based on UAV image and mask R-CNN[D]. Hangzhou: Zhejiang A & F University, 2020.
[11]
HAO Z B, LIN L L, POST C J, et al. Automated tree-crown and height detection in a young forest plantation using mask region-based convolutional neural network (Mask R-CNN)[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 178: 112-123.
[12]
关于发布全国生物物种资源调查相关技术规定试行的公告[Z/OL]. 北京: 环境保护部, 2010. https://www.mee.gov.cn/gkml/hbb/bgg/201004/t20100428_188866.htm.
Announcement on the issuance of relevant technical provisions for the national survey of biological species resources for trial implementation[Z/OL]. Beijing: Ministry of Environmental Protection, 2010. https://www.mee.gov.cn/gkml/hbb/bgg/201004/t20100428_188866.htm.
[13]
汪珍川, 杜虎, 宋同清, 等. 广西主要树种(组)异速生长模型及森林生物量特征[J]. 生态学报, 2015, 35(13):4462-4472.
WANG Z C, DU H, SONG T Q, et al. Allometric models of major tree species and forest biomass in Guangxi[J]. Acta Ecologica Sinica, 2015, 35(13): 4462-4472.
[14]
周国逸, 尹光彩, 唐旭利, 等. 中国森林生态系统碳储量-生物量方程[M]. 北京: 科学出版社, 2018.
ZHOU G Y, YIN G C, TANG X L, et al. Carbon storage-biomass equation of forest ecosystem in China[M]. Beijing: Science Press, 2018.
[15]
戎建涛, 郜爱玲, 刘晓双, 等. 浙南主要乔木树种碳含量研究[J]. 西北林学院学报, 2018, 33(5):258-262.
RONG J T, GAO A L, LIU X S, et al. Carbon concen-tration of the main tree species in southern Zhejiang[J]. Journal of Northwest Forestry University, 2018, 33(5): 258-262.
[16]
徐新良, 曹明奎, 李克让. 中国森林生态系统植被碳储量时空动态变化研究[J]. 地理科学进展, 2007, 26(6):1-10.
XU X L, CAO M K, LI K R. Temporal-spatial dynamics of carbon storage of forest vegetation in China[J]. Progress in Geography, 2007, 26(6): 1-10.
[17]
雷海清, 孙高球, 郑得利. 温州市森林生态系统碳储量研究[J]. 南京林业大学学报:自然科学版, 2022, 46(5):20-26.
LEI H Q, SUN G Q, ZHENG D L. Carbon storage of forest ecosystem in Wenzhou City, Zhejiang Province,China[J]. Journal of Nanjing Forestry University: Natural Sciences Edition, 2022, 46(5): 20-26.
[18]
胡会峰, 王志恒, 刘国华, 等. 中国主要灌丛植被碳储量[J]. 植物生态学报, 2006, 30(4):539-544.
摘要
在广泛收集资料的基础上,利用植被平均碳密度方法,估算了我国6种主要灌丛植被的碳储量,并分析了其区域分布特征。主要结果如下:1) 6种灌丛植被总面积为15 462.64 ×104 hm2,总碳储量为1.68±0.12 Pg C(1 Pg=1015g),灌丛植被平均碳密度为10.88±0.77 Mg C•hm-2(1 Mg=106 g),不同植被类型差异较大,在5.92~17Mg C•hm-2之间波动。2) 从区域分布来看,西南3省(云南、贵州、四川)既是我国灌丛主要的分布地区之一,分布面积占6种灌丛总面积的23.5%,又是我国灌丛碳储量的主要储库,碳储量占整个6种灌丛碳储量的1/3(32.6%),适宜的水热条件决定了该地区的植被平均碳密度要高于全国平均水平。3) 与我国森林和草地的植被碳储量相比,这些灌丛碳储量相当于我国森林和草 地碳储量的27%~40%和36%~55%。
HU H F, WANG Z H, LIU G H, et al. Vegetation carbon storage of major shrublands in China[J]. Journal of Plant Ecology, 2006, 30(4): 539-544.

基金

自然资源部东海局青年海洋科学基金项目(202211)

编辑: 徐晓群
PDF(3792 KB)

Accesses

Citation

Detail

段落导航
相关文章

/