海洋学研究 ›› 2024, Vol. 42 ›› Issue (1): 23-35.DOI: 10.3969/j.issn.1001-909X.2024.01.003
王添翼1,2(), 董彦辉2, 初凤友2,*(), 石学法3, 李小虎2, 苏蓉4, 章伟艳2
收稿日期:
2023-03-24
修回日期:
2023-05-16
出版日期:
2024-03-15
发布日期:
2024-05-11
通讯作者:
* 初凤友(1964—),男,研究员,主要从事海底资源与成矿系统研究,E-mail:chu@sio.org.cn。
作者简介:
王添翼(1998—),男,吉林省双辽市人,主要从事深海富稀土沉积物研究,E-mail:tianyiwang0331@163.com。
基金资助:
WANG Tianyi1,2(), DONG Yanhui2, CHU Fengyou2,*(), SHI Xuefa3, LI Xiaohu2, SU Rong4, ZHANG Weiyan2
Received:
2023-03-24
Revised:
2023-05-16
Online:
2024-03-15
Published:
2024-05-11
摘要:
深海富稀土沉积物广泛分布在西太平洋、东太平洋、东南太平洋、印度洋等地区。本研究对东太平洋克拉里昂-克里珀顿断裂带(Clarion-Clipperton Fracture Zone,简称CC区)的两个站位富稀土沉积物的矿物学与地球化学特征进行了分析,并收集了太平洋92个站位深海富稀土沉积物元素地球化学数据,依据地球化学特征,结合矿物组成,将太平洋深海富稀土沉积物分为富Al型、富Fe型、富Ba型等三个类型。富Al型富稀土沉积物广泛布在西太平洋地区,沉积物类型以沸石黏土为主,全岩Al2O3平均含量可达14.9%。富Fe型富稀土沉积物位于东太平洋海隆附近的东南太平洋和东北太平洋区域,沉积物中TFe2O3平均含量高达18.8%,部分样品呈现明显的Eu正异常,热液活动可能为稀土元素的富集提供了丰富的稀土元素及载体矿物。富Ba型富稀土沉积物主要分布于东太平洋CC区,沉积物类型主要是(含)硅质黏土,Ba平均含量可达8 092×10-6。高Ba含量指示了沉积物形成时期所在海域可能具有很高的初级生产力,这种环境条件形成了大量的生物磷灰石沉积,并与CC区渐新世以来强劲的底流耦合,进而增强了磷灰石的积累,促进了稀土的富集。
中图分类号:
王添翼, 董彦辉, 初凤友, 石学法, 李小虎, 苏蓉, 章伟艳. 太平洋深海富稀土沉积物的分类及成因[J]. 海洋学研究, 2024, 42(1): 23-35.
WANG Tianyi, DONG Yanhui, CHU Fengyou, SHI Xuefa, LI Xiaohu, SU Rong, ZHANG Weiyan. Classification and genesis of deep-sea REY-rich sediments in the Pacific Ocean[J]. Journal of Marine Sciences, 2024, 42(1): 23-35.
区域名称 | 区域范围 | 水深/m | 重力柱状 样品数/根 | 地球化学 数据数量/组 | 富稀土层位 | ||
---|---|---|---|---|---|---|---|
∑REY含量范围/ (×10-6) | ∑REY平均含量/ (×10-6) | 平均埋藏深度/m | |||||
西太平洋[ | 120°E—160°W 0°—35°N | >4 000 | 67 | 2 173 | 700~7 974 | 1 447 | 7.0 |
东太平洋[ | 120°W—160°W 20°N—20°S | >4 500 | 22 | 756 | 700~2 114 | 1 049 | 5.8 |
近东太平洋 海隆[ | 区域1: 130°W—160°W 15°N—45°N 区域2: 90°W—150°W 5°S—25°S | >4 000 | 13 | 401 | 700~2 228 | 1 224 | 4.7 |
表1 富稀土沉积物样品基本背景信息
Tab.1 Basic background information of REY-rich sediment samples
区域名称 | 区域范围 | 水深/m | 重力柱状 样品数/根 | 地球化学 数据数量/组 | 富稀土层位 | ||
---|---|---|---|---|---|---|---|
∑REY含量范围/ (×10-6) | ∑REY平均含量/ (×10-6) | 平均埋藏深度/m | |||||
西太平洋[ | 120°E—160°W 0°—35°N | >4 000 | 67 | 2 173 | 700~7 974 | 1 447 | 7.0 |
东太平洋[ | 120°W—160°W 20°N—20°S | >4 500 | 22 | 756 | 700~2 114 | 1 049 | 5.8 |
近东太平洋 海隆[ | 区域1: 130°W—160°W 15°N—45°N 区域2: 90°W—150°W 5°S—25°S | >4 000 | 13 | 401 | 700~2 228 | 1 224 | 4.7 |
图2 东太平洋CC区GC1901站富稀土沉积物全岩XRD分析(a)及重矿物扫描电镜观察(b)结果
Fig.2 XRD analysis of bulk samples (a) and mineral scanning electron microscope observations (b) of REY-rich sediments (site GC1901) from CCFZ of the Eastern Pacific
图6 不同地区富稀土沉积物稀土元素经PAAS标准化后配分模式图 (PAAS值引自文献[32]。)
Fig. 6 PAAS-normalized REY patterns of REY-rich sediments from different area (PAAS values are from reference [32]. )
图7 不同地区富稀土沉积物Eu*、Ce*与∑REY的关系及(La/Sm)N-(La/Yb)N比值关系图
Fig.7 The ratio relationship among Eu*, Ce*, and ∑REY,as well as (La/Sm)N-(La/Yb)N of REY-rich sediments in different area
区域 | 站位 | 形成年代 |
---|---|---|
西太平洋 | DSDP Site 313 | 中中新世 |
ODP Site 869 | 早中新世 | |
DSDP Site 170 | 晚渐新世 | |
DSDP Site 311 | 早渐新世 | |
DSDP Site 168 | 晚始新世 | |
DSDP Site 68 | 晚始新世 | |
东太平洋 | DSDP Site 74 | 早中新世 |
DSDP Site 163 | 晚渐新世 | |
ODP Site 1220 | 中渐新世-早中新世 | |
ODP Site 1222 | 晚始新世-早中新世 | |
近东太平洋海隆 | DSDP Site 37 | 更新世 |
DSDP Site 597 | 更新世 | |
DSDP Site 319 | 上新世-全新世 | |
ODP Site 1215 | 始新世-全新世 |
表2 太平洋各区域富稀土沉积物年代对比
Tab.2 Age comparisons of REY-rich sediments across various area of the Pacific Ocean
区域 | 站位 | 形成年代 |
---|---|---|
西太平洋 | DSDP Site 313 | 中中新世 |
ODP Site 869 | 早中新世 | |
DSDP Site 170 | 晚渐新世 | |
DSDP Site 311 | 早渐新世 | |
DSDP Site 168 | 晚始新世 | |
DSDP Site 68 | 晚始新世 | |
东太平洋 | DSDP Site 74 | 早中新世 |
DSDP Site 163 | 晚渐新世 | |
ODP Site 1220 | 中渐新世-早中新世 | |
ODP Site 1222 | 晚始新世-早中新世 | |
近东太平洋海隆 | DSDP Site 37 | 更新世 |
DSDP Site 597 | 更新世 | |
DSDP Site 319 | 上新世-全新世 | |
ODP Site 1215 | 始新世-全新世 |
图8 近东太平洋海隆富稀土沉积物站位古地理恢复图 (图件改绘自文献[30]。)
Fig.8 Paleogeographic reconstruction map of REY-rich sediment sites near the Eastern Pacific Rise (Figure is modified from reference [30]. )
[1] | 石学法, 符亚洲, 李兵, 等. 我国深海矿产研究:进展与发现(2011—2020)[J]. 矿物岩石地球化学通报, 2021, 40(2):305-318,517. |
SHI X F, FU Y Z, LI B, et al. Research on deep-sea minerals in China: Progress and discovery (2011-2020)[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(2): 305-318, 517. | |
[2] | HATCH G P. Dynamics in the global market for rare earths[J]. Elements, 2012, 8(5): 341-346. |
[3] | KATO Y, FUJINAGA K, NAKAMURA K, et al. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements[J]. Nature Geoscience, 2011, 4: 535-539. |
[4] | 石学法, 毕东杰, 黄牧, 等. 深海稀土分布规律与成矿作用[J]. 地质通报, 2021, 40(2/3):195-208. |
SHI X F, BI D J, HUANG M, et al. Distribution and mineralization of deep-sea rare earth elements[J]. Geological Bulletin of China, 2021, 40(2/3): 195-208. | |
[5] | 王汾连, 何高文, 孙晓明, 等. 太平洋富稀土深海沉积物中稀土元素赋存载体研究[J]. 岩石学报, 2016, 32(7):2057-2068. |
WANG F L, HE G W, SUN X M, et al. The host of REE+Y elements in deep-sea sediments from the Pacific Ocean[J]. Acta Petrologica Sinica, 2016, 32(7): 2057-2068. | |
[6] | BI D J, SHI X F, HUANG M, et al. Geochemical and mineralogical characteristics of deep-sea sediments from the western North Pacific Ocean: Constraints on the enrichment processes of rare earth elements[J]. Ore Geology Reviews, 2021, 138: 104318. |
[7] | YASUKAWA K, OHTA J, MIYAZAKI T, et al. Statistic and isotopic characterization of deep-sea sediments in the western North Pacific Ocean: Implications for genesis of the sediment extremely enriched in rare earth elements[J]. Geochemistry, Geophysics, Geosystems, 2019, 20(7): 3402-3430. |
[8] | TANAKA E, NAKAMURA K, YASUKAWA K, et al. Chemostratigraphy of deep-sea sediments in the western North Pacific Ocean: Implications for genesis of mud highly enriched in rare-earth elements and yttrium[J]. Ore Geology Reviews, 2020, 119: 103392. |
[9] |
DENG Y N, REN J B, GUO Q J, et al. Rare earth element geochemistry characteristics of seawater and porewater from deep sea in Western Pacific[J]. Scientific Reports, 2017, 7: 16539.
DOI PMID |
[10] | 邓义楠, 任江波, 郭庆军, 等. 太平洋西部富稀土深海沉积物的地球化学特征及其指示意义[J]. 岩石学报, 2018, 34(3):733-747. |
DENG Y N, REN J B, GUO Q J, et al. Geochemistry characteristics of REY-rich sediment from deep sea in Western Pacific, and their indicative significance[J]. Acta Petrologica Sinica, 2018, 34(3): 733-747. | |
[11] | YASUKAWA K, OHTA J, MIMURA K, et al. A new and prospective resource for scandium: Evidence from the geochemistry of deep-sea sediment in the western North Pacific Ocean[J]. Ore Geology Reviews, 2018, 102: 260-267. |
[12] |
TAKAYA Y, YASUKAWA K, KAWASAKI T, et al. The tremendous potential of deep-sea mud as a source of rare-earth elements[J]. Scientific Reports, 2018, 8: 5763.
DOI PMID |
[13] | SA R N, SUN X M, HE G W, et al. Enrichment of rare earth elements in siliceous sediments under slow deposition: A case study of the central North Pacific[J]. Ore Geology Reviews, 2018, 94: 12-23. |
[14] |
YASUKAWA K, NAKAMURA K, FUJINAGA K, et al. Tracking the spatiotemporal variations of statistically independent components involving enrichment of rare-earth elements in deep-sea sediments[J]. Scientific Reports, 2016, 6: 29603.
DOI PMID |
[15] | OHTA J, YASUKAWA K, MACHIDA S, et al. Geological factors responsible for REY-rich mud in the western North Pacific Ocean: Implications from mineralogy and grain size distributions[J]. Geochemical Journal, 2016, 50(6): 591-603. |
[16] | IIJIMA K, YASUKAWA K, FUJINAGA K, et al. Discovery of extremely REY-rich mud in the western North Pacific Ocean[J]. Geochemical Journal, 2016, 50(6): 557-573. |
[17] |
任江波, 姚会强, 朱克超, 等. 稀土元素及钇在东太平洋CC区深海泥中的富集特征与机制[J]. 地学前缘, 2015, 22(4):200-211.
DOI |
REN J B, YAO H Q, ZHU K C, et al. Enrichment mechanism of rare earth elements and yttrium in deep-sea mud of Clarion-Clipperton Region[J]. Earth Science Frontiers, 2015, 22(4): 200-211. | |
[18] |
OHTA J, YASUKAWA K, NOZAKI T, et al. Fish proliferation and rare-earth deposition by topographically induced upwelling at the late Eocene cooling event[J]. Scientific Reports, 2020, 10: 9896.
DOI PMID |
[19] | ZAWADZKI D, MACIAG Ł, ABRAMOWSKI T, et al. Fractionation trends and variability of rare earth elements and selected critical metals in pelagic sediment from abyssal basin of NE Pacific (Clarion-Clipperton fracture zone)[J]. Minerals, 2020, 10(4): 320. |
[20] | ZHOU T C, SHI X F, HUANG M, et al. The influence of hydrothermal fluids on the REY-rich deep-sea sediments in the Yupanqui basin, eastern South Pacific Ocean: Constraints from bulk sediment geochemistry and mineralogical charac-teristics[J]. Minerals, 2020, 10(12): 1141. |
[21] | REN J B, LIU Y, WANG F L, et al. Mechanism and influencing factors of REY enrichment in deep-sea sediments[J]. Minerals, 2021, 11(2): 196. |
[22] | ZHOU T C, SHI X F, HUANG M, et al. Genesis of REY-rich deep-sea sediments in the Tiki Basin, eastern South Pacific Ocean: Evidence from geochemistry, mineralogy and isotope systematics[J]. Ore Geology Reviews, 2021, 138: 104330. |
[23] | KIM M G, HYEONG K, YOO C M. Distribution of rare earth elements and yttrium in sediments from the Clarion-Clipperton fracture zone, northeastern Pacific Ocean[J]. Geochemistry, Geophysics, Geosystems, 2022, 23(7):e2022GC010454. |
[24] | 任江波, 何高文, 朱克超, 等. 富稀土磷酸盐及其在深海成矿作用中的贡献[J]. 地质学报, 2017, 91(6):1312-1325. |
REN J B, HE G W, ZHU K C, et al. REY-rich phosphate and its effects on the deep-sea mud mineralization[J]. Acta Geologica Sinica, 2017, 91(6): 1312-1325. | |
[25] | 硅酸盐岩石化学分析方法:第28部分 16个主次成分量测定:GB/T 14506.28—2010[S]. 2010. |
Methods for chemical analysis of silicate rocks—Part 28: Determination of 16 major and minor elements content: GB/T 14506.28—2010[S]. 2010. | |
[26] | 硅酸盐岩石化学分析方法:第30部分 44个元素量测定:GB/T 14506.30—2010[S]. 2010. |
Methods for chemical analysis of silicate rocks—Part 30: Determination of 44 elements: GB/T 14506.30—2010[S]. 2010. | |
[27] | 黄牧, 刘季花, 石学法, 等. 东太平洋CC区沉积物稀土元素特征及物源[J]. 海洋科学进展, 2014, 32(2):175-187. |
HUANG M, LIU J H, SHI X F, et al. Geochemical characteristics and material sources of rare earth elements in sediments from the CC area in the Eastern Pacific Ocean[J]. Advances in Marine Science, 2014, 32(2): 175-187. | |
[28] | YEATS R S, HART S R, ADE-HALL J M, et al. Site 319[R]// YEATS R S, HART S R, ADE-HALL J M, et al. Initial Report of the Deep Sea Drilling Project: Volume 34. Washington: U.S. Government Printing Office, 1976: 19-80. http://www.deepseadrilling.org/34/volume/dsdp34_03.pdf. DOI: 10.2973/dsdp.proc.34.103.1976. |
[29] | MCMANUS D A, BURNS R E, BORCH C, et al. Site 37[R]// MCMANUS D A, BURES R E, WESER O, et al. Initial Reports of the Deep Sea Drilling Project: Volume 5. Washington: U.S. Government Printing Office, 1970: 255-273. http://www.deepseadrilling.org/05/volume/dsdp05_07.pdf. DOI: 10.2973/dsdp.proc.5.107.1970. |
[30] | LYLE M, WILSON P A, JANECEK T R, et al. Site 1215[R]// LYLE M, WILSON P A, JANECEK T R, et al. Proceedings of the Ocean Drilling Program, Initial Reports: Volume 199. College Station: Texas A&M University, 2002. http://www-odp.tamu.edu/publications/199_IR/VOLUME/CHAPTERS/IR199_08.PDF. DOI: 10.2973/odp.proc.ir.199.108.2002. |
[31] | LEINEN M, REA D K, ANDERSON R N, et al. Site 597[R]// LEINEN M, REA D K, ANDERSON R N, et al. Initial Reports of the Deep Sea Drilling Project: Volume 92. Washington: U.S. Government Printing Office, 1986: 25-96. http://www.deepseadrilling.org/92/volume/dsdp92_02.pdf. DOI:10.2973/dsdp.proc.92.102.1986. |
[32] | TAYLOR S R, MCLENNAN S M. Chapter 21 the rare earth element evidence in Precambrian sedimentary rocks: Implications for crustal evolution[M]//Developments in Precambrian Geology. Amsterdam: Elsevier, 1981: 527-548. |
[33] | MOYEN J F. High Sr/Y and La/Yb ratios: The meaning of the “adakitic signature”[J]. Lithos, 2009, 112: 556-574. |
[34] | WINTERER E L, EWING J I, DOUGLAS R G, et al. Site 170[R]// WINTERER E L, EWING J I, DOUGLAS R G, et al. Initial Reports of the Deep Sea Drilling Project: Volume 17. Washington: U.S. Government Printing Office, 1973: 263-281. http://www.deepseadrilling.org/17/volume/dsdp17_08.pdf. DOI: 10.2973/dsdp.proc.17.108.1973. |
[35] | LARSON R L, MOBERLY R, BUKRY D, et al. Site 311: Hawaiian magnetic lineations[R]// LARSON R L, MOBERLY R, BUKRY D, et al. Initial Reports of the Deep Sea Drilling Project: Volume 32. Washington: U.S. Government Printing Office, 1975: 295-309. http://www.deepseadrilling.org/32/volume/dsdp32_10.pdf. DOI: 10.2973/dsdp.proc.32.110.1975. |
[36] | WINTERER E L, EWING J I, DOUGLAS R G, et al. Site 168[R]// WINTERER E L, EWING J I, DOUGLAS R G, et al. Initial Reports of the Deep Sea Drilling Project: Volume 17. Washington: U.S. Government Printing Office, 1973: 235-246. http://www.deepseadrilling.org/17/volume/dsdp17_06.pdf. DOI: 10.2973/dsdp.proc.17.106.1973. |
[37] | LARSON R L, MOBERLY R, BUKRY D, et al. Site 313: Mid-Pacific Mountains[R]// LARSON R L, MOBERLY R, BUKRY D, et al. Initial Reports of the Deep Sea Drilling Project: Volume 32. Washington: U.S. Government Printing Office, 1975: 313-390. http://www.deepseadrilling.org/32/volume/dsdp32_12.pdf. DOI: 10.2973/dsdp.proc.32.112.1975. |
[38] | TRACEY J I JR, SUTTON G H, NESTEROFF W D, et al. Site 68[R]// TRACEY J I JR, SUTTON G H, NESTEROFF W D, et al. Initial Reports of the Deep Sea Drilling Project: Volume 8. Washington: U.S. Government Printing Office, 1971: 45-60. http://www.deepseadrilling.org/08/volume/dsdp08_03.pdf. DOI: 10.2973/dsdp.proc.8.103.1971. |
[39] | LYLE M, WILSON P A, JANECEK T R, et al. LEG 199 summary[R]// LYLE M, WILSON P A, JANECEK T R, et al. Proceedings of the Ocean Drilling Program, Initial Reports: Volume 199. College Station: Texas A&M Univer-sity, 2002. http://www-odp.tamu.edu/publications/199_IR/chap_01/chap_01.htm. DOI: 10.2973/odp.proc.ir.199.101.2002. |
[40] | TRACEY J I JR, SUTTON G H, NESTEROFF W D, et al. Site 74[R]// TRACEY J I JR, SUTTON G H, NESTEROFF W D, et al. Initial Reports of the Deep Sea Drilling Project: Volume 8. Washington: U.S. Government Printing Office, 1971: 621-674. http://www.deepseadrilling.org/08/volume/dsdp08_09.pdf. DOI: 10.2973/dsdp.proc.8.109.1971. |
[41] | PÄLIKE H, NISHI H, LYLE M, et al. Integrated Ocean Drilling Program Expedition 320 Preliminary Report: Pacific Equatorial Age Transect[R]. Integrated Ocean Drilling Program Management International, Inc., 2009: 1-175. http://publications.iodp.org/preliminary_report/320/320pr_2.htm. DOI:10.2204/iodp.pr.320.2009. |
[42] | LYLE M, WILSON P A, JANECEK T R, et al. Site 1220[R]// LYLE M, WILSON P A, JANECEK T R, et al. Proceedings of the Ocean Drilling Program, Initial Reports: Volume 199. College Station: Texas A&M University, 2002. http://www-odp.tamu.edu/publications/199_IR/chap_13/chap_13.htm. DOI: 10.2973/odp.proc.ir.199.113.2002. |
[43] | LYLE M, WILSON P A, JANECEK T R, et al. Site 1222[R]// LYLE M, WILSON P A, JANECEK T R, et al. Proceedings of the Ocean Drilling Program, Initial Reports: Volume 199. College Station: Texas A&M University, 2002. http://www-odp.tamu.edu/publications/199_IR/chap_15/chap_15.htm. DOI: 10.2973/odp.proc.ir.199.115.2002. |
[44] | SAGER WW, WINTERER E L, FIRTH J V, et al. Site 869[R]// Proceedings of the Ocean Drilling Program, Initial Reports: Volume 143. College Station: Texas A&M University, 1993: 297-374. http://www-odp.tamu.edu/publications/143_IR/VOLUME/CHAPTERS/ir143_09.pdf. DOI: 10.2973/odp.proc.ir.143.109.1993. |
[45] | VAN ANDEL T H, HEATH G R, BENNETT R H, et al. Site 163[R]// VAN ANDEL T H, HEATH G R, BENNETT R H, et al. Initial Report of the Deep Sea Drilling Project: Volume 16. Washington: U.S. Government Printing Office, 1973: 411-471. http://www.deepseadrilling.org/16/volume/dsdp16_10.pdf. DOI: 10.2973/dsdp.proc.16.110.1973. |
[46] | MOORE JR T C, WADE B S, WESTERHOLD T, et al. Equatorial Pacific productivity changes near the Eocene-Oligocene boundary[J]. Paleoceanography, 2014, 29(9): 825-844. |
[47] | REN J B, JIANG X X, HE G W, et al. Enrichment and sources of REY in phosphate fractions: Constraints from the leaching of REY-rich deep-sea sediments[J]. Geochimica et Cosmochimica Acta, 2022, 335: 155-168. |
[48] | LIAO J L, SUN X M, LI D F, et al. New insights into nanostructure and geochemistry of bioapatite in REE-rich deep-sea sediments: LA-ICP-MS, TEM, and Z-contrast imaging studies[J]. Chemical Geology, 2019, 512: 58-68. |
[49] | YASUKAWA K, OHTA J, HAMADA M, et al. Essential processes involving REE-enrichment in biogenic apatite in deep-sea sediment decoded via multivariate statistical analyses[J]. Chemical Geology, 2022, 614: 121184. |
[50] | DENG Y N, GUO Q J, LIU C Q, et al. Early diagenetic control on the enrichment and fractionation of rare earth elements in deep-sea sediments[J]. Science Advances, 2022, 8(25): eabn5466. |
[51] | DUTKIEWICZ A, MÜLLER R D. Deep-sea hiatuses track the vigor of Cenozoic Ocean bottom currents[J]. Geology, 2022, 50(6): 710-715. |
[52] | POULTON S W, CANFIELD D E. Co-diagenesis of iron and phosphorus in hydrothermal sediments from the southern East Pacific Rise: Implications for the evaluation of paleoseawater phosphate concentrations[J]. Geochimica et Cosmochimica Acta, 2006, 70(23): 5883-5898. |
[53] | LIU Y, JING Y T, ZHAO W C. Distribution of rare earth elements and implication for Ce anomalies in the clay-sized minerals of deep-sea sediment, Western Pacific Ocean[J]. Applied Clay Science, 2023, 235: 106876. |
[54] | MCKAY J L, PEDERSEN T F. The accumulation of silver in marine sediments: A link to biogenic Ba and marine productivity[J]. Global Biogeochemical Cycles, 2008, 22(4): GB4010. |
[55] | DYMOND J, SUESS E, LYLE M. Barium in deep-sea sediment: A geochemical proxy for paleoproductivity[J]. Paleoceanography, 1992, 7(2): 163-181. |
[56] | DYMOND J, COLLIER R. Particulate Barium fluxes and their relationships to biological productivity[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 1996, 43(4/5/6): 1283-1308. |
[57] | VAN ANDEL T H, HEATH G R, BENNETT R H, et al. Site 163[R]// VAN ANDEL T H, HEATH G R, BENNETT R H, et al. Initial Reports of the Deep Sea Drilling Project: Volume 16. Washington: U.S. Government Printing Office, 1973: 411-471. http://www.deepseadrilling.org/16/volume/dsdp16_10.pdf. DOI: 10.2973/dsdp.proc.16.110.1973. |
[58] |
ZACHOS J, PAGANI M, SLOAN L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5517): 686-693.
DOI PMID |
[59] | ERHARDT A M, PÄLIKE H, PAYTAN A. High-resolution record of export production in the eastern equatorial Pacific across the Eocene-Oligocene transition and relationships to global climatic records[J]. Paleoceanography, 2013, 28(1): 130-142. |
[60] | XIE R H, MU M, FANG X H. New indices for better understanding ENSO by incorporating convection sensitivity to sea surface temperature[J]. Journal of Climate, 2020, 33(16): 7045-7061. |
[61] | COXALL H K, WILSON P A. Early Oligocene glaciation and productivity in the eastern equatorial Pacific: Insights into global carbon cycling[J]. Paleoceanography, 2011, 26(2): PA2221. |
[62] | SIBERT E C, ZILL M E, FRIGYIK E T, et al. No state change in pelagic fish production and biodiversity during the Eocene-Oligocene transition[J]. Nature Geoscience, 2020, 13: 238-242. |
[1] | 张旭东, 丘仲锋, 毛科峰, 王鹏皓. 西北太平洋中尺度涡合成结构及其对声传播的影响[J]. 海洋学研究, 2024, 42(1): 58-68. |
[2] | 邬欣然, 董彦辉, 李正刚, 王浩, 章伟艳, 李怀明, 李小虎, 初凤友. 东太平洋CC区深海稀土资源潜力:沉积物地球化学标志[J]. 海洋学研究, 2023, 41(4): 46-56. |
[3] | 孟宇, 陈双玲. 海水硝酸盐跃层深度计算方法研究[J]. 海洋学研究, 2023, 41(3): 1-13. |
[4] | 龚芳, 朱伯仲, 李腾, 王雨馨, 李鸿喆, 何贤强, 张清. 南太平洋典型岛国海洋生态环境状况及其对汤加火山爆发的响应[J]. 海洋学研究, 2023, 41(3): 101-114. |
[5] | 邓韬, 许冬, 肖婷露, 叶黎明, 章伟艳. 西太平洋海山盆地沉积物黏土矿物特征及其指示意义[J]. 海洋学研究, 2023, 41(3): 56-72. |
[6] | 祝飞扬, 李怀明, 姚鹏飞, 王潇, 朱继浩, 吕士辉, 罗祎, 周丽娜, 刘禹维, 唐煜童. 两相淋滤实验在深海铁锰结核研究中的应用[J]. 海洋学研究, 2023, 41(2): 83-93. |
[7] | 蒋佳茗, 汪亦蕾. 热带西北太平洋0~300 m热含量的年代际变化[J]. 海洋学研究, 2022, 40(1): 1-11. |
[8] | 许钰佳, 陈长霖, 彭旭东, 刘磊, . 西北太平洋热带气旋路径预报偏差分析[J]. 海洋学研究, 2021, 39(2): 1-11. |
[9] | 李月, 许冬, 张志毅, 蒋科迪, 刘庚. 西太平洋E20岩芯末次冰期以来的沉积特征与环境意义[J]. 海洋学研究, 2021, 39(2): 12-20. |
[10] | 王苑如, 崔鸿鹏, 李继东, 孙栋, 王春生, 杨娟. 西太平洋多金属结核区表层沉积物细菌群落结构及其对沉积扰动的响应[J]. 海洋学研究, 2021, 39(2): 21-32. |
[11] | 周永远, 闫运伟, 邢小罡, 柴扉. 基于Argo实测流场数据对5套海洋模式产品中赤道太平洋中层流的评估[J]. 海洋学研究, 2020, 38(3): 1-9. |
[12] | 刘松楠, 许东峰. 北太平洋热带水体积的年际变化及其变化机制[J]. 海洋学研究, 2020, 38(2): 1-8. |
[13] | 张志毅, 许冬, 韩喜彬, 王雁冰, 胡智龙, 葛倩, 阳凡林. 雅浦-马里亚纳海沟附近海域的精细地貌特征研究[J]. 海洋学研究, 2020, 38(1): 27-41. |
[14] | 孟凡盛, 倪建宇, 姚旭莹. 西太平洋马尔库斯-威克海山区沉积物中生物硅含量分布[J]. 海洋学研究, 2019, 37(4): 60-67. |
[15] | 马志康, 付东洋, 屈科, 朱凤芹. 台风“天秤”对两种深海声道下声传播的影响[J]. 海洋学研究, 2019, 37(3): 40-48. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||