海洋学研究 ›› 2024, Vol. 42 ›› Issue (1): 36-46.DOI: 10.3969/j.issn.1001-909X.2024.01.004
赵学凯1(), 郭凯元1, 周运浩1, 贾莉园1, 杨智博1, 张勤旭1, 张明亮1,2,*()
收稿日期:
2023-04-12
修回日期:
2023-09-07
出版日期:
2024-03-15
发布日期:
2024-05-11
通讯作者:
* 张明亮(1976—),男,教授,主要从事近海环境水动力模拟研究,E-mail:zhmliang_mail@126.com。
作者简介:
赵学凯 (1998—),男,山东省招远市人,主要从事近海水环境遥感及数值模拟研究,E-mail:xuekaizhao@126.com。
基金资助:
ZHAO Xuekai1(), GUO Kaiyuan1, ZHOU Yunhao1, JIA Liyuan1, YANG Zhibo1, ZHANG Qinxu1, ZHANG Mingliang1,2,*()
Received:
2023-04-12
Revised:
2023-09-07
Online:
2024-03-15
Published:
2024-05-11
摘要:
基于2019—2020年HY-1C CZI的L2B级泥沙数据和同期气象、水文数据,应用空间分析和统计方法开展辽河口海域悬浮泥沙质量浓度的时空变化特征及其动力因素分析研究。结果表明:潮汐是该海域悬浮泥沙日变化的主导因素,落潮期平均悬浮泥沙质量浓度高于涨潮期;径流对辽河口海域悬浮泥沙质量浓度影响的范围主要在近岸区域,一般不超过5 m等深线;当落潮流流向与风向相反时,浑浊带常横向扩展,而当落潮流流向与风向相同时,浑浊带则收缩在辽河口顶部;风速与悬浮泥沙质量浓度存在显著相关性,离岸越近,风对悬浮泥沙的作用越强烈,这可能与风、浪的协同作用有关;受潮流、径流和风浪的影响,8 m等深线内侧通常发育为最大浑浊带。
中图分类号:
赵学凯, 郭凯元, 周运浩, 贾莉园, 杨智博, 张勤旭, 张明亮. 辽河口悬浮泥沙时空变化特征及其动力因素分析[J]. 海洋学研究, 2024, 42(1): 36-46.
ZHAO Xuekai, GUO Kaiyuan, ZHOU Yunhao, JIA Liyuan, YANG Zhibo, ZHANG Qinxu, ZHANG Mingliang. Spatio-temporal variation of suspended sediment and its dynamic factors in Liaohe Estuary[J]. Journal of Marine Sciences, 2024, 42(1): 36-46.
成像时间 | 潮型 | 潮时 | 潮高/cm | 风速/(m·s-1) | 风向 |
---|---|---|---|---|---|
2019-03-22 | 大潮 | 落潮起6.37 h | 66 | 5.09 | SW |
2019-03-31 | 小潮 | 涨潮起3.78 h | 207 | 5.96 | NW |
2019-04-06 | 大潮 | 落潮起5.00 h | 86 | 3.43 | ENE |
2019-04-12 | 小潮 | 落潮起2.00 h | 225 | 5.99 | SW |
2019-04-15 | 小潮 | 涨潮起3.38 h | 198 | 7.36 | SW |
2019-04-21 | 大潮 | 落潮起5.30 h | 77 | 3.19 | NE |
2019-06-23 | 中潮 | 落潮起1.83 h | 258 | 3.98 | NE |
2019-08-16 | 大潮 | 落潮起5.00 h | 90 | 2.50 | WNW |
2019-08-31 | 大潮 | 落潮起5.52 h | 65 | 3.47 | SSW |
2019-10-12 | 中潮 | 落潮起6.83 h | 47 | 5.38 | NNE |
2020-07-11 | 中潮 | 落潮起2.00 h | 258 | 2.25 | SW |
2020-10-15 | 中潮 | 涨潮起0.70 h | 57 | 4.74 | SW |
2020-10-24 | 小潮 | 涨潮起6.67 h | 371 | 3.39 | S |
2020-10-27 | 小潮 | 涨潮起2.23 h | 185 | 1.82 | ESE |
2020-10-30 | 中潮 | 落潮起6.58 h | 47 | 3.17 | S |
表1 影像成像时刻的潮情和风况
Tab.1 Tide and wind conditions at the imaging time
成像时间 | 潮型 | 潮时 | 潮高/cm | 风速/(m·s-1) | 风向 |
---|---|---|---|---|---|
2019-03-22 | 大潮 | 落潮起6.37 h | 66 | 5.09 | SW |
2019-03-31 | 小潮 | 涨潮起3.78 h | 207 | 5.96 | NW |
2019-04-06 | 大潮 | 落潮起5.00 h | 86 | 3.43 | ENE |
2019-04-12 | 小潮 | 落潮起2.00 h | 225 | 5.99 | SW |
2019-04-15 | 小潮 | 涨潮起3.38 h | 198 | 7.36 | SW |
2019-04-21 | 大潮 | 落潮起5.30 h | 77 | 3.19 | NE |
2019-06-23 | 中潮 | 落潮起1.83 h | 258 | 3.98 | NE |
2019-08-16 | 大潮 | 落潮起5.00 h | 90 | 2.50 | WNW |
2019-08-31 | 大潮 | 落潮起5.52 h | 65 | 3.47 | SSW |
2019-10-12 | 中潮 | 落潮起6.83 h | 47 | 5.38 | NNE |
2020-07-11 | 中潮 | 落潮起2.00 h | 258 | 2.25 | SW |
2020-10-15 | 中潮 | 涨潮起0.70 h | 57 | 4.74 | SW |
2020-10-24 | 小潮 | 涨潮起6.67 h | 371 | 3.39 | S |
2020-10-27 | 小潮 | 涨潮起2.23 h | 185 | 1.82 | ESE |
2020-10-30 | 中潮 | 落潮起6.58 h | 47 | 3.17 | S |
[1] | BESSELL-BROWNE P, NEGRI A P, FISHER R, et al. Impacts of turbidity on corals: The relative importance of light limitation and suspended sediments[J]. Marine Pollution Bulletin, 2017, 117(1/2): 161-170. |
[2] | GENSAC E, MARTINEZ J M, VANTREPOTTE V, et al. Seasonal and inter-annual dynamics of suspended sediment at the mouth of the Amazon River: The role of continental and oceanic forcing, and implications for coastal geomorphology and mud bank formation[J]. Continental Shelf Research, 2016, 118: 49-62. |
[3] | AFFANDI F A, ISHAK M Y. Impacts of suspended sediment and metal pollution from mining activities on riverine fish population—a review[J]. Environmental Science and Pollution Research, 2019, 26(17): 16939-16951. |
[4] | LU T, WU H, ZHANG F, et al. Constraints of salinity- and sediment-induced stratification on the turbidity maximum in a tidal estuary[J]. Geo-Marine Letters, 2020, 40(5): 765-779. |
[5] | AMOUDRY L O, SOUZA A J. Deterministic coastal morp-hological and sediment transport modeling: A review and discussion[J]. Reviews of Geophysics, 2011, 49(2): 1-21. |
[6] | KONG J L, SHAN Z B, CHEN Y, et al. Assessment of remote-sensing retrieval models for suspended sediment concentration in the Gulf of Bohai[J]. International Journal of Remote Sensing, 2019, 40(5/6): 2324-2342. |
[7] | HU Y K, YU Z F, ZHOU B, et al. Tidal-driven variation of suspended sediment in Hangzhou Bay based on GOCI data[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 82: 101920. |
[8] | MARINHO R R, HARMEL T, MARTINEZ J M, et al. Spatiotemporal dynamics of suspended sediments in the Negro River, Amazon Basin, from in situ and Sentinel-2 remote sensing data[J]. ISPRS International Journal of Geo-Information, 2021, 10(2): 86. |
[9] | MIN J E, RYU J H, LEE S, et al. Monitoring of suspended sediment variation using Landsat and MODIS in the Saemangeum coastal area of Korea[J]. Marine Pollution Bulletin, 2012, 64(2): 382-390. |
[10] | 齐琳, 胡传民, 陆应诚, 等. 基于HY-1C/D卫星CZI的海洋、湖泊中漂浮藻藻华的光谱分析与识别[J]. 遥感学报, 2023, 27(1):157-170. |
QI L, HU C M, LU Y C, et al. Spectral analysis and identification of floating algal blooms in oceans and lakes based on HY-1C/D CZI observations[J]. National Remote Sensing Bulletin, 2023, 27(1): 157-170. | |
[11] | 刘锦超, 刘建强, 丁静, 等. HY-1C卫星CZI载荷的黄海绿潮提取研究[J]. 海洋学报, 2022, 44(5):1-11. |
LIU J C, LIU J Q, DING J, et al. A refined imagery algorithm to extract green tide in the Yellow Sea from HY-1C satellite CZI measurements[J]. Haiyang Xuebao, 2022, 44(5): 1-11. | |
[12] | HUANG Y Y, TANG S L, WU J. A chlorophyll-a retrieval algorithm for the Coastal Zone Imager (CZI) onboard the HY-1C satellite in the Pearl River Estuary, China[J]. International Journal of Remote Sensing, 2021, 42(21): 8365-8379. |
[13] | DU K, MA Y, JIANG Z C, et al. Detection of oil spill based on CBF-CNN using HY-1C CZI multispectral images[J]. Acta Oceanologica Sinica, 2022, 41(7): 166-179. |
[14] | CAI L N, ZHOU M R, LIU J Q, et al. HY-1C observations of the impacts of islands on suspended sediment distribution in Zhoushan coastal waters, China[J]. Remote Sensing, 2020, 12(11): 1766. |
[15] | CAI L N, ZHOU M R, YAN X, et al. HY-1C Coastal Zone Imager observations of the suspended sediment content distribution details in the sea area near Hong Kong-Zhuhai-Macao Bridge in China[J]. Acta Oceanologica Sinica, 2022, 41(11): 126-138. |
[16] | LUO W, LI R H, SHEN F, et al. HY-1C/D CZI image atmospheric correction and quantifying suspended particulate matter[J]. Remote Sensing, 2023, 15(2): 386. |
[17] | 刘大为, 胡克, 赵雪, 等. 近30年辽河口盖州滩沉积环境研究[J]. 海洋学报, 2017, 39(7):131-142. |
LIU D W, HU K, ZHAO X, et al. The research of sedimentary environment of Gaizhou Shoal at Liaohe Estuary in recent 30 years[J]. Haiyang Xuebao, 2017, 39(7): 131-142. | |
[18] | 马志强, 周遵春, 杨爽. 辽东湾北部近海海域表层沉积物类型及分布特征[J]. 水产科学, 2008, 27(2):95-97. |
MA Z Q, ZHOU Z C, YANG S. The characteristics of surface sediment types and distribution in the north inshore sea area of Liaodong Bay[J]. Fisheries Science, 2008, 27(2): 95-97. | |
[19] |
韩志远, 谢华亮, 强海洋, 等. 近50 a来辽河口水下三角洲演变特征研究[J]. 海洋学研究, 2019, 37(3):64-72.
DOI |
HAN Z Y, XIE H L, QIANG H Y, et al. Evolution research on subaqueous delta of Liaohe Estuary in recent 50 years[J]. Journal of Marine Sciences, 2019, 37(3): 64-72. | |
[20] | CHEN C S, HUANG H S, BEARDSLEY R C, et al. Tidal dynamics in the Gulf of Maine and New England Shelf: An application of FVCOM[J]. Journal of Geophysical Research: Oceans, 2011, 116(C12): 1-14. |
[21] | ZHANG M L, XU T P, JIANG H Z. The impacts of runoff decrease and shoreline change on the salinity distribution in the wetlands of Liao River Estuary, China[J]. Ocean Science, 2021, 17(1): 187-201. |
[22] | CHENG Z X, WANG X H, PAULL D, et al. Application of the geostationary ocean color imager to mapping the diurnal and seasonal variability of surface suspended matter in a macro-tidal estuary[J]. Remote Sensing, 2016, 8(3): 244. |
[23] | XIAO Y, WU Z, CAI H Y, et al. Suspended sediment dynamics in a well-mixed estuary: The role of high suspended sediment concentration (SSC) from the adjacent sea area[J]. Estuarine, Coastal and Shelf Science, 2018, 209: 191-204. |
[24] | 杨辉, 范宝山, 朱新华, 等. 东北地区河口潮流挟沙能力的研究[J]. 泥沙研究, 2005(5):74-81. |
YANG H, FAN B S, ZHU X H, et al. Sediment carrying capacity of tide current in Northeast China estuaries[J]. Journal of Sediment Research, 2005(5): 74-81. | |
[25] | CHEN B, WANG K. Suspended sediment transport in the offshore near Yangtze Estuary[J]. Journal of Hydrodynamics, 2008, 20(3): 373-381. |
[26] | 张明, 冯小香, 郝媛媛. 辽东湾北部海域悬浮泥沙时空变化遥感定量研究[J]. 泥沙研究, 2011(4):15-21. |
ZHANG M, FENG X X, HAO Y Y. Quantitative remote sensing study on spatio-temporal variation of suspended sediment in North Liaodong Bay[J]. Journal of Sediment Research, 2011(4): 15-21. | |
[27] | WANG L H, ZHOU Y X, SHEN F. Suspended sediment diffusion mechanisms in the Yangtze Estuary influenced by wind fields[J]. Estuarine, Coastal and Shelf Science, 2018, 200: 428-436. |
[28] |
WANG Q S, KANG H G. A three-dimensional modeling of the morphological change in the Liaodong Bay[J]. Frontiers of Earth Science, 2015, 9(3): 509-520.
DOI |
[29] | ZHOU Z, BIAN C W, WANG C H, et al. Quantitative assessment on multiple timescale features and dynamics of sea surface suspended sediment concentration using remote sensing data[J]. Journal of Geophysical Research: Oceans, 2017, 122(11): 8739-8752. |
[30] | GREEN M O, COCO G. Review of wave- driven sediment resuspension and transport in estuaries[J]. Reviews of Geophysics, 2014, 52(1): 77-117. |
[31] | NELSON K S, FRINGER O B. Sediment dynamics in wind wave- dominated shallow-water environments[J]. Journal of Geophysical Research: Oceans, 2018, 123(10): 6996-7015. |
[32] | GONG W P, WANG J X, ZHANG G, et al. Effect of axial winds and waves on sediment dynamics in an idealized convergent partially mixed estuary[J]. Marine Geology, 2023, 458: 107015. |
[1] | 栾奎峰, 徐航, 潘与佳, 等. 基于高光谱传感器的长江口表层悬浮泥沙质量浓度光谱曲线特征研究#br#[J]. 海洋学研究, 2022, 40(1): 64-71. |
[2] | 邹亚荣, 刘建强, 梁超, 朱海天. 基于HY-1C卫星CZI数据的红树林长势遥感监测[J]. 海洋学研究, 2020, 38(1): 68-76. |
[3] | 邓绍坤, 吴祥柏. 基于再分析数据的南大西洋上层海洋热含量变化研究[J]. 海洋学研究, 2019, 37(3): 12-20. |
[4] | 韩志远, 谢华亮, 强海洋, 李怀远. 近50a来辽河口水下三角洲演变特征研究[J]. 海洋学研究, 2019, 37(3): 64-72. |
[5] | 沈辉, 黄大吉. 渤、黄、东海冬季海表冷暖水舌的时空变化及机理分析[J]. 海洋学研究, 2017, 35(1): 1-13. |
[6] | 李源, 时连强, 童宵岭, 廖甜. 近50 a来秀山岛岸线时空变化规律及其原因浅析[J]. 海洋学研究, 2016, 34(4): 46-53. |
[7] | 陈淑文, 宋俊廷, 类成龙, 汪翔, 蔡中华. 深圳湾浮游细菌生物量的时空动态及影响因素[J]. 海洋学研究, 2016, 34(4): 84-91. |
[8] | 刘建斌, 张永刚. 丹麦海峡海洋锋时空变化特征研究[J]. 海洋学研究, 2016, 34(2): 1-10. |
[9] | 许宁, 高志强, 宁吉才. 基于分形维数的环渤海地区海岸线变迁及成因分析[J]. 海洋学研究, 2016, 34(1): 45-51. |
[10] | 郭凤霞, 邱建立, 吴松华, 郭国明. 丁坝间潮滩地貌变化的经验正交函数分析[J]. 海洋学研究, 2012, 30(4): 37-45. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||