
基于遥感数据与数值模式的浒苔漂移输运预报:以江苏近海为例
林连杰, 董昌明, 嵇宇翔, LIM KAM SIAN Kenny Thiam Choy, 李兆鑫, 蒋星亮, 曹玉晗, 高慧, 王胜强, 曹茜
海洋学研究 ›› 2024, Vol. 42 ›› Issue (1) : 69-82.
基于遥感数据与数值模式的浒苔漂移输运预报:以江苏近海为例
Prediction of UIva prolifera drift and transportation based on remote sensing data and numerical models: A case study in the offshore area of Jiangsu Province
浒苔暴发是影响全球近岸海域最为严重的海洋灾害之一,引起了社会各方的重视。该研究基于大气-波浪-海洋集合模式,根据卫星遥感数据提取浒苔位置,采用拉格朗日漂流模式对浒苔进行追踪并预报其漂移路径。与卫星观测结果对比表明,该集合模式能够较好地预报浒苔的位置、分布及其漂移路径。此外,该研究还讨论了Stokes漂流对于模式预报的影响,结果表明考虑Stokes漂流可以修正浒苔漂移路径,有效提高预报的准确性。
UIva prolifera outbreak is one of the most serious marine disasters affecting the global offshore waters, which has attracted the attention of all sectors of society. According to the location of UIva prolifera extracted from satellite data, the Lagrangian drift model was used to track and predict the drift path of UIva prolifera based on the sea-air-wave set model. Compared with satellite observation, this prediction model can better predict the position, distribution and drift transport of UIva prolifera. In addition, this study also discussed the impact of Stokes Drift on the model prediction. The results show that adding Stokes Drift can correct the drift path of UIva prolifera and effectively improve the accuracy of prediction.
UIva prolifera / model forecast / Stokes Drift / Jiangsu offshore
[1] |
|
[2] |
何进, 石雅君, 王玉珏, 等. 不同温度与营养盐条件对浒苔(Ulva prolifera)和肠浒苔(Ulva intestinalis)的生长影响[J]. 海洋通报, 2013, 32(5):573-579.
|
[3] |
|
[4] |
|
[5] |
王明清, 姜鹏, 王金锋, 等. 2007年夏季青岛石莼科(Ulvaceae)绿藻无机元素含量分析[J]. 生物学杂志, 2008, 25(4):37-38,9.
|
[6] |
The recurrent green tide of Ulva prolifera caused serious ecological problems in the Yellow Sea and attached substantial scientific study. The bloom originated in the Subei Shoal area and drifted to the coast of Shandong Province during the period from May to July, driven by a series of physical processes. Here we reviewed advances in the understanding of green tides in the Yellow Sea and elucidate the developmental model of this phenomenon. This knowledge will help resource managers to take reasonable measures to mitigate the impacts to the Yellow Sea. Copyright © 2016 Elsevier Ltd. All rights reserved.
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
吉会峰, 刘吉堂, 莫旭冬, 等. 江苏重点海域绿潮漂移扩散数值模拟[J]. 海洋科学, 2018, 42(5):82-91.
|
[13] |
黄娟, 吴玲娟, 高松, 等. 黄海绿潮应急漂移数值模拟[J]. 海洋预报, 2011, 28(1):25-32.
|
[14] |
李燕, 李云, 刘钦政. 浒苔漂移轨迹预报系统[J]. 海洋预报, 2010, 27(4):74-78.
|
[15] |
赵昌, 尹丽萍, 王关锁, 等. 黄海浒苔漂移输运模式的建立与应用[J]. 海洋与湖沼, 2018, 49(5):1075-1083.
|
[16] |
何恩业, 季轩梁, 黄洪辉, 等. 近10a黄海浒苔绿潮时空分布特征分析[J]. 海洋预报, 2021, 38(6):1-11.
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
刘金林, 杨晓倩, 李继业, 等. 黄海绿潮暴发期间浒苔沉降研究进展[J]. 环境污染与防治, 2020, 42(5):614-618.
|
[26] |
吴青. 浒苔漂浮与沉降机制研究[D]. 上海: 上海海洋大学, 2015.
|
/
〈 |
|
〉 |