海洋学研究 ›› 2024, Vol. 42 ›› Issue (1): 69-82.DOI: 10.3969/j.issn.1001-909X.2024.01.007

• 研究论文 • 上一篇    下一篇

基于遥感数据与数值模式的浒苔漂移输运预报:以江苏近海为例

林连杰1(), 董昌明1,*(), 嵇宇翔2, LIM KAM SIAN Kenny Thiam Choy3, 李兆鑫4, 蒋星亮5, 曹玉晗6, 高慧1, 王胜强1, 曹茜1   

  1. 1.南京信息工程大学 海洋科学学院,江苏 南京 210044
    2.江苏省连云港市气象局,江苏 连云港 222006
    3.无锡学院,江苏 无锡 214105
    4.华东师范大学 河口海岸学国家重点实验室,上海 200241
    5.复旦大学 大气与海洋科学系,上海 200433
    6.江苏海洋大学 海洋技术与测绘学院,江苏 连云港 222005
  • 收稿日期:2023-03-15 修回日期:2023-09-08 出版日期:2024-03-15 发布日期:2024-05-11
  • 通讯作者: * 董昌明(1974—),男,教授,主要从事物理海洋学、海洋数值模拟、人工智能海洋学及实验地球流体力学等方面的研究,E-mail:002537@nuist.edu.cn
  • 作者简介:林连杰(1998—),男,福建省泉州市人,主要从事海洋气象及数值模拟等方面的研究,E-mail:20211209005@nuist.edu.cn
  • 基金资助:
    江苏省研究生科研与实践创新计划项目(KYCX23_1346);江苏省自然资源发展专项资金项目(JSZRHYKJ202102);国家自然科学基金项目(42130405)

Prediction of UIva prolifera drift and transportation based on remote sensing data and numerical models: A case study in the offshore area of Jiangsu Province

LIN Lianjie1(), DONG Changming1,*(), JI Yuxiang2, LIM KAM SIAN Kenny Thiam Choy3, LI Zhaoxin4, JIANG Xingliang5, CAO Yuhan6, GAO Hui1, WANG Shengqiang1, CAO Qian1   

  1. 1. School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China
    2. Lianyungang Meteorological Bureau of Jiangsu Province, Lianyungang 222006, China
    3. Wuxi University, Wuxi 214105, China
    4. State Key Laboratory of Estuarine and Coastal Sciences, East China Normal University, Shanghai 200241, China
    5. Department of Atmospheric and Oceanic Sciences, Fudan University, Shanghai 200433, China
    6. School of Marine Technology and Geomatics, Jiangsu Ocean University, Lianyungang 222005, China
  • Received:2023-03-15 Revised:2023-09-08 Online:2024-03-15 Published:2024-05-11

摘要:

浒苔暴发是影响全球近岸海域最为严重的海洋灾害之一,引起了社会各方的重视。该研究基于大气-波浪-海洋集合模式,根据卫星遥感数据提取浒苔位置,采用拉格朗日漂流模式对浒苔进行追踪并预报其漂移路径。与卫星观测结果对比表明,该集合模式能够较好地预报浒苔的位置、分布及其漂移路径。此外,该研究还讨论了Stokes漂流对于模式预报的影响,结果表明考虑Stokes漂流可以修正浒苔漂移路径,有效提高预报的准确性。

关键词: 浒苔, 模式预报, Stokes漂流, 江苏近海

Abstract:

UIva prolifera outbreak is one of the most serious marine disasters affecting the global offshore waters, which has attracted the attention of all sectors of society. According to the location of UIva prolifera extracted from satellite data, the Lagrangian drift model was used to track and predict the drift path of UIva prolifera based on the sea-air-wave set model. Compared with satellite observation, this prediction model can better predict the position, distribution and drift transport of UIva prolifera. In addition, this study also discussed the impact of Stokes Drift on the model prediction. The results show that adding Stokes Drift can correct the drift path of UIva prolifera and effectively improve the accuracy of prediction.

Key words: UIva prolifera, model forecast, Stokes Drift, Jiangsu offshore

中图分类号: