海洋学研究 ›› 2024, Vol. 42 ›› Issue (2): 1-14.DOI: 10.3969/j.issn.1001-909X.2024.02.001
• 研究论文 • 下一篇
李晟1,2,3,4, 宣基亮2,3,*, 黄大吉1,2,3
收稿日期:
2023-07-17
修回日期:
2023-09-15
出版日期:
2024-06-15
发布日期:
2024-08-09
通讯作者:
宣基亮
作者简介:
*宣基亮(1982—),男,研究员,主要从事近海动力过程研究,E-mail: xuanjl@sio.org.cn。基金资助:
LI Sheng1,2,3,4, XUAN Jiliang2,3,*, HUANG Daji1,2,3
Received:
2023-07-17
Revised:
2023-09-15
Online:
2024-06-15
Published:
2024-08-09
Contact:
XUAN Jiliang
摘要:
基于多源观测数据,分析了台风右侧暖涡对2010年南海台风“鲇鱼”的响应,发现了意料之外的暖涡增强和海水下沉现象。台风“鲇鱼”过境期间,暖涡海面高度距平(SLA)最大值从30 cm增加至36 cm、半径从78 km增大至116 km、涡动能从166 m2/s2增加至303 m2/s2、振幅从3 cm增大至9 cm,台风右侧暖涡边缘的Argo站位处温跃层海水下沉20~40 m。为此,诊断分析了台风风应力旋度对暖涡的单独作用,结果显示暖涡及暖涡边缘的Argo站位处总体受正风应力旋度作用,正风应力旋度将使暖涡减弱、温跃层抬升,与观测到的暖涡增强和海水下沉结果不符。而基于实际海面流场的诊断分析表明,台风“鲇鱼”过境期间台风路径下方的海水辐散,路径右侧暖涡区域海水辐聚,暖涡SLA最大值、涡旋振幅均与辐聚强度呈正相关,Argo站位处海水下沉29 m,都与观测结果相符。个例分析研究表明,位于台风路径外围的中尺度涡对台风的响应不仅受风应力旋度的作用,还受海洋背景环境条件的调制,存在着需要深入研究的过程和机制。
中图分类号:
李晟, 宣基亮, 黄大吉. 台风右侧暖涡对台风“鲇鱼”的响应[J]. 海洋学研究, 2024, 42(2): 1-14.
LI Sheng, XUAN Jiliang, HUANG Daji. Responses of a warm mesoscale eddy to bypassed typhoon Megi in the South China Sea[J]. Journal of Marine Sciences, 2024, 42(2): 1-14.
图1 台风“鲇鱼”的移动路径与强度 (彩色线条代表台风移动路径,其颜色表示台风中心最大风速,虚线方框表示研究区域,黑色三角表示当日0时的台风中心位置,绿色菱形为Argo浮标位置,黑色粗实线为10月24日的暖涡范围。)
Fig.1 Trajectory and intensity of typhoon Megi (The colored line represents the trajectory of the typhoon, its color represents the maximum wind speed at the typhoon center, the dashed line box represents the research area, the black triangles represent the location of the typhoon center at 0 o’clock on that day, the green diamonds are the location of the Argo station, and the black thick lines are the region of the warm eddy on October 24.)
图2 台风“鲇鱼”过境南海期间海表面高度距平(SLA)的逐日变化 (蓝色实线表示台风路径,蓝色虚线表示台风当日轨迹,蓝色三角形表示当日0时、12时、24 时的台风中心位置,黑色实线表示暖涡范围,绿色菱形表示Argo浮标位置。图2h中的黑色虚线和红色虚线分别为台风7级风圈包络线和最大风速圈包络线。后文图中符号同此。)
Fig.2 Daily mean SLA during the passage of typhoon Megi in the South China Sea (The blue solid line represents the trajectory of typhoon Megi, the blue dashed line represents the trajectory of typhoon Megi on that day, the blue triangles represent the center of the typhoon at 00:00, 12:00, and 24:00 on that day, the black solid line represents the region of the warm eddy, the green diamond marks the location of the Argo station. The black dashed line and the red dashed line in figure 2h represent the envelope of typhoon’s force 7 wind circle and the envelope of maximum wind speed circle, respectively. The symbols in the following figure are the same.)
图3 暖涡SLA最大值、涡旋半径、涡动能、涡旋振幅的逐日变化 (图中用虚线标出了台风“鲇鱼”开始影响暖涡的时间。)
Fig.3 Daily variation of the SLA maximum, radius, kinetic energy and amplitude of the warm eddy (The dashed line indicates the time when typhoon Megi begin to affect the warm eddy.)
图4 台风过境前、后Argo站位处的温度(a)、盐度(b)、密度超量(c)及其变化的垂向分布 (黑色实线表示台风过境前(10月17日)的数据,黑色虚线表示台风过境后(10月21日)的数据,红色实线表示台风过境后数据减去台风过境前数据。两条黑色横虚线分别对应台风过境前、后的上混合层深度:35 m和90 m。)
Fig.4 The vertical profile and corresponding variation of temperature (a), salinity (b) and density excess (c) before and after the typhoon Megi at Argo station (The black solid line represents the data before the typhoon passes through, the black dashed line represents the data after the typhoon passes through, the red solid line represents the difference between the data after and before the typhoon passes through. The two black horizontal dashed lines correspond to the depths of the upper mixed layer before and after the typhoon passes through: 35 m and 90 m, respectively.)
图5 Argo站位处的T-S曲线(a)和基于温度、密度剖面计算的海水升降距离(b) (图5a中黑色数字为密度超量,蓝色和红色数字分别为部分海水下沉极值点对应的下沉前后深度。图5b中的黑色横向虚线标出了下沉距离的两个特征水层:60 m和280 m。)
Fig.5 The T-S plot (a) and the upwelling/downwelling distances calculated based on temperature and density profiles (b) at Argo station (In figure 5a, the black numbers indicate the density excesses, the blue and red numbers indicate the depths before and after sinking of some seawater sinking extreme points, respectively. In figure 5b, the black horizontal dashed lines mark the two characteristic water layers for the sinking distance: 60 m and 280 m.)
图6 台风“鲇鱼”过境南海期间研究海区逐日12时的风场及风应力旋度 (黑色虚线表示风应力旋度为0的等值线,灰色箭头表示风矢量。)
Fig.6 Daily wind field and wind stress curl at 12:00 during the passage of typhoon Megi in the South China Sea (The black dashed line represents the contours where wind stress curl is zero, the gray arrows represent wind vectors.)
图7 埃克曼抽吸速率、风应力旋度和累计温跃层升降距离的时间变化 (图7a中的黑色实线表示暖涡与台风“鲇鱼”距离最近时刻。图7b中的黑色实线表示Argo浮标与台风“鲇鱼”距离最近时刻,黑色虚线表示Argo浮标的两次观测时间。)
Fig.7 Time-variation of Ekman pumping velocity, wind stress curl and accumulated thermocline upwelling/downwelling distances (The black solid line in figure 7a represents the moment when the warm eddy is closest to typhoon Megi. The black solid line in figure 7b represents the moment when the Argo station is closest to typhoon Megi, and the black dashed lines represent the time of the two observations at the Argo station.)
图8 海面高度异常的变化(a~d),海面流场散度的变化(e~h)以及暖涡区域海面流场散度的通量、暖涡SLA最大值、暖涡振幅随时间的变化(i) (图8i中的竖虚线表示台风“鲇鱼”开始影响暖涡的时间。)
Fig.8 Time-variations of SLA (a-d); divergence of sea surface flow(e-h); flux of divergence, SLA maximum and amplitude within the warm eddy extent(i) (The vertical dashed line in figure 8i represents the time when typhoon Megi begin to affect the warm eddy.)
图9 台风“鲇鱼”过境前、后的海面流场散度(a~b),海面温度(c~d)以及海面叶绿素a质量浓度(e-f)
Fig.9 Divergence of sea surface flow (a-b), sea surface temperature(c-d), chlorophyll-a mass concentration(e-f) before and after the passage of typhoon Megi
[1] | ZHANG H. Modulation of upper ocean vertical temperature structure and heat content by a fast-moving tropical cyclone[J]. Journal of Physical Oceanography, 2023, 53(2): 493-508. |
[2] | PRICE J F. Upper ocean response to a hurricane[J]. Journal of Physical Oceanography, 1981, 11(2): 153-175. |
[3] | CHENG L, ZHU J, SRIVER R L. Global representation of tropical cyclone-induced short-term ocean thermal changes using Argo data[J]. Ocean Science, 2015, 11(5): 719-741. |
[4] | GREATBATCH R J. On the response of the ocean to a moving storm: Parameters and scales[J]. Journal of Physical Oceanography, 1984, 14(1): 59-78. |
[5] | EMANUEL K A. An air-sea interaction theory for tropical cyclones.Part I: Steady-state maintenance[J]. Journal of the Atmospheric Sciences, 1986, 43(6): 585-605. |
[6] | ZHANG H, CHEN D K, ZHOU L, et al. Upper ocean response to typhoon Kalmaegi (2014)[J]. Journal of Geophysical Research: Oceans, 2016, 121(8): 6520-6535. |
[7] | ZHANG H, LIU X H, WU R H, et al. Ocean response to successive typhoons Sarika and Haima (2016) based on data acquired via multiple satellites and moored array[J]. Remote Sensing, 2019, 11(20): 2360. |
[8] | JAIMES B, SHAY L K. Enhanced wind-driven downwelling flow in warm oceanic eddy features during the intensification of tropical cyclone Isaac (2012): Observations and theory[J]. Journal of Physical Oceanography, 2015, 45(6): 1667-1689. |
[9] | MA Z H, FEI J F, LIU L, et al. An investigation of the influences of mesoscale ocean eddies on tropical cyclone intensities[J]. Monthly Weather Review, 2017, 145(4): 1181-1201. |
[10] | ZHENG Z W, HO C R, ZHENG Q A, et al. Effects of preexisting cyclonic eddies on upper ocean responses to category 5 typhoons in the western North Pacific[J]. Journal of Geophysical Research: Oceans, 2010, 115:C09013. |
[11] | LIU X M, WANG M H, SHI W. A study of a Hurricane Katrina-induced phytoplankton bloom using satellite observations and model simulations[J]. Journal of Geophysical Research: Oceans, 2009, 114: C03023. |
[12] | ZHENG Z W, HO C R, KUO N J. Importance of pre-existing oceanic conditions to upper ocean response induced by super typhoon Hai-Tang[J]. Geophysical Research Letters, 2008, 35: L20603. |
[13] | ZHANG Y, ZHANG Z G, CHEN D K, et al. Strengthening of the Kuroshio current by intensifying tropical cyclones[J]. Science, 2020, 368(6494): 988-993. |
[14] | LU Z M, WANG G H, SHANG X D. Response of a preexisting cyclonic ocean eddy to a typhoon[J]. Journal of Physical Oceanography, 2016, 46(8): 2403-2410. |
[15] | WALKER N D, LEBEN R R, BALASUBRAMANIAN S. Hurricane-forced upwelling and chlorophyll a enhancement within cold-core cyclones in the Gulf of Mexico[J]. Geophysical Research Letters, 2005, 32(18): L18610. |
[16] | 刘广平, 胡建宇. 南海中尺度涡旋对热带气旋的响应:个例研究[J]. 台湾海峡, 2009, 28(3):308-315. |
LIU G P, HU J Y. Response of the mesoscale eddies to tropical cyclones in the South China Sea: A case study[J]. Journal of Oceanography in Taiwan Strait, 2009, 28(3): 308-315. | |
[17] | 刘欣, 韦骏. 热带气旋与海洋暖涡间的海-气相互作用[J]. 北京大学学报:自然科学版, 2014, 50(3):456-466. |
LIU X, WEI J. Air-sea interaction between tropical cyclone and ocean warm core ring[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014, 50(3): 456-466. | |
[18] | CHIANG T L, WU C R, OEY L Y. Typhoon Kai-Tak: An ocean’s perfect storm[J]. Journal of Physical Oceanography, 2011, 41(1): 221-233. |
[19] | LIN I I, WU C C, EMANUEL K A, et al. The interaction of supertyphoon Maemi (2003) with a warm ocean eddy[J]. Monthly Weather Review, 2005, 133(9): 2635-2649. |
[20] | CHELTON D B, SCHLAX M G, SAMELSON R M. Global observations of nonlinear mesoscale eddies[J]. Progress in Oceanography, 2011, 91(2): 167-216. |
[21] | SHI Y Y, LIU X H, LIU T Y, et al. Characteristics of mesoscale eddies in the vicinity of the Kuroshio: Statistics from satellite altimeter observations and OFES model data[J]. Journal of Marine Science and Engineering, 2022, 10(12): 1975. |
[22] | SANFORD T B, PRICE J F, GIRTON J B. Upper-ocean response to hurricane Frances (2004) observed by profiling EM-APEX floats[J]. Journal of Physical Oceanography, 2011, 41(6): 1041-1056. |
[23] | SANFORD T B, PRICE J F, GIRTON J B, et al. Highly resolved observations and simulations of the ocean response to a hurricane[J]. Geophysical Research Letters, 2007, 34:L13604. |
[24] | ESAIAS W E, ABBOTT M R, BARTON I, et al. An overview of MODIS capabilities for ocean science obser-vations[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(4): 1250-1265. |
[25] | THOPPIL P G, HOGAN P J. Persian Gulf response to a wintertime shamal wind event[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2010, 57(8): 946-955. |
[26] | PRICE J F, SANFORD T B, FORRISTALL G Z. Forced stage response to a moving hurricane[J]. Journal of Physical Oceanography, 1994, 24(2): 233-260. |
[27] | YING M, ZHANG W, YU H, et al. An overview of the China Meteorological Administration tropical cyclone database[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(2): 287-301. |
[28] | LU X Q, YU H, YING M, et al. Western North Pacific tropical cyclone database created by the China Meteorological Administration[J]. Advances in Atmospheric Sciences, 2021, 38(4): 690-699. |
[29] | RISER S C, FREELAND H J, ROEMMICH D, et al. Fifteen years of ocean observations with the global Argo array[J]. Nature Climate Change, 2016, 6(2): 145-153. |
[30] | 陈大可, 许建平, 马继瑞, 等. 全球实时海洋观测网(Argo)与上层海洋结构、变异及预测研究[J]. 地球科学进展, 2008, 23(1):1-7. |
CHEN D K, XU J P, MA J R, et al. Argo global observation network and studies of upperocean structure, variability and predictability[J]. Advances in Earth Science, 2008, 23(1): 1-7. | |
[31] | LIU S S, SUN L, WU Q Y, et al. The responses of cyclonic and anticyclonic eddies to typhoon forcing: The vertical temperature-salinity structure changes associated with the horizontal convergence/divergence[J]. Journal of Geophysical Research: Oceans, 2017, 122(6): 4974-4989. |
[32] | SUN L, YANG Y J, XIAN T, et al. Ocean responses to typhoon Namtheun explored with Argo floats and multiplatform satellites[J]. Atmosphere-Ocean, 2012, 50(supp): 15-26. |
[1] | 陈相宇, 于姜梅, 沈远, 倪云林, 陆凡. 不同台风风场在浙江海域台风浪模拟中的适用性研究[J]. 海洋学研究, 2024, 42(2): 15-25. |
[2] | 付殿福, 谢波涛, 黄必桂, 金魏芳, 牟勇, 蔺飞龙. 南海西北部台风激发近惯性波频移研究[J]. 海洋学研究, 2023, 41(4): 12-20. |
[3] | 吕曌, 伍志元, 蒋昌波, 张浩键, 高凯, 颜仁. 基于海气耦合模式的超强台风“山竹”数值模拟[J]. 海洋学研究, 2023, 41(4): 21-31. |
[4] | 俞杰, 张翰, 陈大可. 基于Argo数据研究南海上层海洋对超强台风“威马逊”(2014)的温盐响应[J]. 海洋学研究, 2023, 41(2): 14-27. |
[5] | 柯道勋, 张翰, 唐佑民, 等. 台风期间浮标和潜标上ADCP的空间变化、数据误差及校正#br#[J]. 海洋学研究, 2022, 40(1): 101-111. |
[6] | 陈升, 甘敏, 孙丽, 谢冬梅, 陈永平. 上海沿海风暴潮历史特征分析[J]. 海洋学研究, 2021, 39(4): 101-108. |
[7] | 潘存鸿, 潘冬子, 郑君, 陈刚. 台风对钱塘江涌潮影响研究[J]. 海洋学研究, 2020, 38(4): 40-47. |
[8] | 方明豹, 黄佳钰, 杨万康, 孙纯键. 海岛核电厂址的设计基准洪水位研究[J]. 海洋学研究, 2020, 38(4): 80-87. |
[9] | 任剑波, 何青, 沈健, 郭磊城, 徐凡. 远区台风“三巴”对河口波浪增水和波生流影响数值模拟研究[J]. 海洋学研究, 2019, 37(3): 21-30. |
[10] | 马志康, 付东洋, 屈科, 朱凤芹. 台风“天秤”对两种深海声道下声传播的影响[J]. 海洋学研究, 2019, 37(3): 40-48. |
[11] | 伍志元, 蒋昌波, 何智勇, 陈杰, 邓斌, 谢振东. 大气-海浪耦合模式及其在理想台风模拟中的应用研究[J]. 海洋学研究, 2019, 37(2): 9-15. |
[12] | 伍志元, 蒋昌波, 邓斌, 曹永港. WRF模式中台风“启德”模拟对参数化方案的敏感性分析[J]. 海洋学研究, 2019, 37(1): 1-8. |
[13] | 薛淑君. 南海土台风强度变化特征分析[J]. 海洋学研究, 2018, 36(3): 1-16. |
[14] | 陈夏月, 任永宽, 李连君, 母昌考, 李荣华, 宋微微, 王春琳. 台风过境对养殖三疣梭子蟹抗氧化系统及Na+,K+-ATP酶活性的影响[J]. 海洋学研究, 2018, 36(3): 101-106. |
[15] | 陈橙, 李焱. 基于SWAN模型的南中国海“莫拉菲”台风浪研究[J]. 海洋学研究, 2017, 35(4): 14-19. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||