海上移动平台GNSS可降水量反演影响因素研究

曹凯, 罗孝文, 文崧, 尤伟

海洋学研究 ›› 2024, Vol. 42 ›› Issue (2) : 71-80.

PDF(3333 KB)
PDF(3333 KB)
海洋学研究 ›› 2024, Vol. 42 ›› Issue (2) : 71-80. DOI: 10.3969/j.issn.1001-909X.2024.02.007
研究论文

海上移动平台GNSS可降水量反演影响因素研究

作者信息 +

Research on precipitable water vapor inversion influencing factors of GNSS for offshore mobile platforms

Author information +
文章历史 +

摘要

基于海上移动平台GNSS动态精密单点定位技术(precise point positioning, PPP),对海洋上空可降水量(precipitable water vapor, PWV)探测的影响因素进行了研究,主要分析了采样间隔,卫星截止高度角,PPP解算方式(固定解或浮点解)以及有无北斗卫星系统组合对海洋PWV反演的影响。结果显示,采样间隔为30 s时,PWV反演的精度最高;可用卫星数较少的情况下,截止高度角设为5°~10°时,PWV反演精度更优,随着卫星截止高度角的增大,反演精度逐渐降低;定位解是否固定对PWV反演精度影响较小;在GPS/GLONASS系统组合的基础上,加入北斗卫星观测值,将提高观测的冗余度,有利于PWV反演精度的提高。

Abstract

Based on Global Navigation Satellite System (GNSS) dynamic precision point positioning technology (PPP), the influence factors of precipitable water vapor (PWV) detection over the ocean were studied. The sampling interval, satellite masking angle, PPP solution method (fixed solution or floating point solution), and the influence of Beidou satellite system combination on ocean PWV retrieval were mainly analyzed. In the marine observation environment, the results show that the accuracy of PWV inversion is the highest when the sampling interval is 30 s. When the number of available satellites is small, the accuracy of PWV inversion is better when the satellite masking angle is set to 5°-10°, and the accuracy decreases gradually with the increase of the satellite masking angle. Whether the PPP solution is fixed or not, it has little effect on the accuracy of PWV inversion. On the basis of GPS/GLONASS system combination, adding Beidou observation value will improve the redundancy of observation and improve the accuracy of PWV inversion.

关键词

海上移动平台 / 精密单点定位技术(PPP) / 北斗卫星(BDS) / PWV / 影响因素

Key words

offshore mobile platform / precise point positioning (PPP) / Beidou Navigation Satellite System (BDS) / precipitable water vapor(PWV) / influencing factors

引用本文

导出引用
曹凯, 罗孝文, 文崧, . 海上移动平台GNSS可降水量反演影响因素研究[J]. 海洋学研究. 2024, 42(2): 71-80 https://doi.org/10.3969/j.issn.1001-909X.2024.02.007
CAO Kai, LUO Xiaowen, WEN Song, et al. Research on precipitable water vapor inversion influencing factors of GNSS for offshore mobile platforms[J]. Journal of Marine Sciences. 2024, 42(2): 71-80 https://doi.org/10.3969/j.issn.1001-909X.2024.02.007
中图分类号: P228.49;P426   

参考文献

[1]
WANG J H, ZHANG L Y. Systematic errors in global radiosonde precipitable water data from comparisons with ground-based GPS measurements[J]. Journal of Climate, 2008, 21(10): 2218-2238.
[2]
PERDIGUER-LÓPEZ R, BERNÉ-VALERO J L, GARRIDO-VILLÉN N. Application of GNSS methodologies to obtain precipitable water vapor (PWV) and its comparison with radiosonde data[J]. Multidisciplinary Digital Publishing Institute Proceedings, 2019, 19(1): 24.
[3]
FIONDA E, CADEDDU M, MATTIOLI V, et al. Intercom-parison of integrated water vapor measurements at high latitudes from co-located and near-located instruments[J]. Remote Sensing, 2019, 11(18): 2130.
[4]
HE J, LIU Z Z. Water vapor retrieval from MODIS NIR channels using ground-based GPS data[J]. IEEE Transac-tions on Geoscience and Remote Sensing, 2020, 58(5): 3726-3737.
[5]
BARNES J E, KAPLAN T, VÖMEL H, et al. NASA/Aura/Microwave Limb Sounder water vapor validation at Mauna Loa observatory by Raman lidar[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D15): D15S03.
[6]
CHADWELL C D, BOCK Y. Direct estimation of absolute precipitable water in oceanic regions by GPS tracking of a coastal buoy[J]. Geophysical Research Letters, 2001, 28(19): 3701-3704.
[7]
ROCKEN C, JOHNSONJ, VAN HOVE T, et al. Atmospheric water vapor and geoid measurements in the open ocean with GPS[J]. Geophysical Research Letters, 2005, 32(12):L12813.
[8]
FUJITA M, KIMURA F, YONEYAMA K, et al. Verification of precipitable water vapor estimated from shipborne GPS measurements[J]. Geophysical Research Letters, 2008, 35(13): L13803.
[9]
BONIFACE K, CHAMPOLLION C, CHERY J, et al. Potential of shipborne GPS atmospheric delay data for prediction of Mediterranean intense weather events[J]. Atmospheric Science Letters, 2012, 13(4): 250-256.
[10]
FAN S J, ZANG J F, PENG X Y, et al. Validation of atmospheric water vapor derived from ship-borne GPS measurements in the Chinese Bohai Sea[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2016, 27(2): 213-220.
[11]
SHOJI Y, SATO K, YABUKI M, et al. Comparison of shipborne GNSS-derived precipitable water vapor with radiosonde in the western North Pacific and in the seas adjacent to Japan[J]. Earth, Planets and Space, 2017, 69(1): 153.
[12]
SOHN D H, CHOI B K, PARK Y, et al. Precipitable water vapor retrieval from shipborne GNSS observations on the Korean research vessel ISABU[J]. Sensors, 2020, 20(15): 4261.
[13]
綦子民, 屈小川, 赖山东, 等. GPT3模型在安徽地区的性能[J]. 大地测量与地球动力学, 2023, 43(5):481-486.
QI Z M, QU X C, LAI S D, et al. Performance of GPT3 model in Anhui Province[J]. Journal of Geodesy and Geodynamics, 2023, 43(5): 481-486.
[14]
王来顺, 刘建忠, 张寅宝. GPT3模型中国区域大气剖面应用精度分析[J]. 测绘工程, 2023, 32(1):21-29,36.
WANG L S, LIU J Z, ZHANG Y B. Analysis of application accuracy of GPT3 model in China’s regional atmospheric profile[J]. Engineering of Surveying and Mapping, 2023, 32(1): 21-29, 36.
[15]
LANDSKRON D, BÖHM J. VMF3/GPT3: refined discrete and empirical troposphere mapping functions[J]. Journal of Geodesy, 2018, 92(4): 349-360.
[16]
李黎, 刘彦, 王迅, 等. 不同时空条件下RTKLib与在线PPP解算系统的ZTD精度评估[J]. 大地测量与地球动力学, 2023, 43(1):12-17.
LI L, LIU Y, WANG X, et al. ZTD precision analysis of RTKLib and online PPP resolution systems under varied spatiotemporal conditions[J]. Journal of Geodesy and Geodynamics, 2023, 43(1): 12-17.
[17]
范士杰, 胡卓, 彭秀英, 等. GPS水汽反演的双向滤波结果分析[J]. 测绘科学, 2019, 44(12):179-183.
FAN S J, HU Z, PENG X Y, et al. Analysison the bilateral filtering results of GPS water vapor inversion[J]. Science of Surveying and Mapping, 2019, 44(12): 179-183.
[18]
郭敏, 张捍卫, 李鹏杰. 大气加权平均温度对GNSS PWV精度的影响分析[J]. 地球物理学进展, 2023, 38(4):1455-1465.
GUO M, ZHANG H W, LI P J. Influence of weighted average temperature on PWV accuracy[J]. Progress in Geophysics, 2023, 38(4): 1455-1465.
[19]
YAO Y B, ZHANG B, XU C Q, et al. Analysis of the global Tm-Ts correlation and establishment of the latitude-related linear model[J]. Chinese Science Bulletin, 2014, 59(19): 2340-2347.
[20]
王朝阳. 中国沿海GPS/GLONASS组合水汽反演关键技术与变化特征研究[D]. 青岛: 山东科技大学, 2018.
WANG Z Y. Study on key technologies and variation of water vapor retrieval with GPS/GLONASS in the coastal regions of china[D]. Qingdao: Shandong University of Science and Technology, 2018.
[21]
刘梦杰, 涂满红, 王洪, 等. 台站处北斗/GNSS实时大气水汽反演及试验分析[J]. 测绘科学, 2022, 47(11):25-31.
LIU M J, TU M H, WANG H, et al. Construction of in situ BDS/GNSS real-time precipitable water vapor retrieval and experiment analysis[J]. Science of Surveying and Mapping, 2022, 47(11): 25-31.
[22]
王朝阳, 卢勇夺, 邢喆, 等. 卫星截止高度角、对流层映射函数和海潮模型对南极GNSS精密定位的影响分析[J]. 大地测量与地球动力学, 2020, 40(12):1294-1298.
WANG Z Y, LU Y D, XING Z, et al. Research on influence of satellite cut-off elevation angle, tropospheric mapping function and ocean tide model on Antarctica GNSS PPP[J]. Journal of Geodesy and Geodynamics, 2020, 40(12): 1294-1298.
[23]
范士杰, 刘焱雄, 高兴国, 等. 海上动态GPS大气可降水量信息反演[J]. 中国石油大学学报:自然科学版, 2012, 36(3):84-87,92.
FAN S J, LIU Y X, GAO X G, et al. Retrieval method of marine kinematic GPS precipitable water vapor[J]. Journal of China University of Petroleum: Edition of Natural Science, 2012, 36(3): 84-87, 92.
[24]
陈冠旭, 刘焱雄, 柳响林, 等. 船载GNSS探测海洋水汽信息的影响因子分析[J]. 武汉大学学报:信息科学版, 2017, 42(2):270-276.
CHEN G X, LIU Y X, LIU X L, et al. Analysison influen-cing factors of ocean water vapor estimated from shipborne GNSS measurements[J]. Geomatics and Information Science of Wuhan University, 2017, 42(2): 270-276.
[25]
朱恒, 郑竹锦, 祝会忠, 等. GNSS多系统实时对流层延迟估计及影响因素分析[J]. 测绘科学, 2022, 47(5):18-25.
ZHU H, ZHENG Z J, ZHU H Z, et al. Multi-GNSS real-time troposphere delay estimation and its impact factors analyzing[J]. Science of Surveying and Mapping, 2022, 47(5): 18-25.

基金

国家重点研发计划项目(2022YFC3003800)
中央级公益性科研院所基本科研业务费专项资金资助项目(YJJC2401)
浙江省财政一般公共预算资助项目(330000210130313013006)

PDF(3333 KB)

Accesses

Citation

Detail

段落导航
相关文章

/