
拖曳式海洋三分量磁力梯度仪的数据处理方法与应用
Data processing method and application of towed marine three-component magnetic gradiometer
拖曳式海洋三分量磁力梯度仪能够同时获得地磁三分量和磁力梯度数据,与传统的拖曳式总场磁力仪相比具有降低船磁干扰和抵抗地磁日变影响等优点,也存在灵敏度误差、零点偏移误差、正交性误差和位置误差等校准处理的难点。在实际航次中用拖曳式海洋三分量磁力梯度仪实测得到一条剖面数据,经校准后与G880磁力仪重复线测量的地磁总场数据进行外符合精度评价,表明其具有较高的稳定性和可靠性。根据三分量磁力梯度数据计算得到其张量不变量以及磁边界走向图,并结合欧拉反褶积计算,对测线上的磁源体进行了有效识别和解释。结果显示拖曳式海洋三分量磁力梯度仪能够有效获得地磁总场、分量及梯度等多参量信息,可为海洋地磁场测量提供更有效的技术手段。
The towed marine three-component magnetic gradiometer can obtain the geomagnetic three-component and magnetic gradient data at the same time. Compared with the traditional towed geomagnetic total field magnetometer, the towed marine three-component magnetic gradiometer has the advantages of reducing the ship magnetic interference and resisting the influence of geomagnetic daily variation, but it also has some shortcomings such as sensitivity error, zero offset error, orthogonality error and position error. In the actual voyage, a section data measured by the towed marine three-component magnetic gradiometer was calibrated to the total geomagnetic field data measured by the G880 magnetometer, which proved its high stability and reliability. Based on the three component magnetic gradient data, the tensor invariants and the trend of magnetic boundary were obtained, and combined with the Euler deconvolution calculation, the magnetic source body on the measurement line was effectively identified and interpreted. The results show that the towed three-component marine gradiometer can effectively obtain the information of geomagnetic field, component and gradient, which can provide a more effective technical means for marine geomagnetic field measurement.
地磁三分量 / 标量校准 / 磁力梯度张量 / 磁边界走向图 / 欧拉反褶积
geomagnetic three components / calibration of scalar / magnetic gradient tensor / magnetic boundary trend map / Euler deconvolution
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
王文健, 高金耀, 吴招才, 等. 南极普里兹湾船载地磁三分量数据处理分析[J]. 极地研究, 2017, 29(3):349-356.
|
[6] |
赵俊峰. 南海北部海盆三分量磁测结果分析[J]. 热带海洋学报, 2009, 28(4):54-58.
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
徐行, 龚跃华, 王功祥, 等. 海洋磁力梯度测量技术在水合物勘探中的应用[J]. 海洋地质与第四纪地质, 2005, 25(3):97-101.
|
[12] |
闫辉, 肖昌汉, 沈明, 等. 船载地磁场三分量测量算法的实验验证[J]. 海洋测绘, 2010, 30(3):27-29.
|
[13] |
周超烨, 金际航, 李宏武, 等. 三分量磁通门传感器校正的循环优化算法[J]. 海洋测绘, 2010, 30(4):63-66,72.
|
[14] |
|
[15] |
高翔, 严胜刚, 李斌. 三轴磁通门磁梯度仪转向差校正方法研究[J]. 仪器仪表学报, 2016, 37(6):1226-1232.
|
[16] |
高翔, 严胜刚, 李斌. 基于最小二乘的磁通门梯度仪转向差校正方法[J]. 西北工业大学学报, 2016, 34(5):837-842.
|
[17] |
黄谟涛, 欧阳永忠, 翟国君, 等. 海面与航空重力测量重复测线精度评估公式注记[J]. 武汉大学学报:信息科学版), 2013, 38(10):1175-1177.
|
[18] |
吴招才. 磁力梯度张量技术及其应用研究[D].武汉:中国地质大学, 2008.
|
[19] |
徐熠. 磁梯度张量异常反演算法与算例[D]. 北京: 中国地质大学(北京), 2015.
|
[20] |
|
[21] |
孙中任, 赵雪娟, 王丽娜. 地面磁测数据正常场改正现行方法探讨[J]. 地质与勘探, 2011, 47(4):679-685.
|
[22] |
简燕, 李文尧, 武中华. 高精度磁测正常场改正和高度改正精度[J]. 物探与化探, 2011, 35(3):368-370,387.
|
[23] |
|
[24] |
|
[25] |
|
[26] |
李赫. 转换型大陆边缘地壳结构及构造-沉积演化过程研究:以东非莫桑比克南部陆缘为例[D].杭州:浙江大学, 2021.
|
/
〈 |
|
〉 |