海洋学研究 ›› 2024, Vol. 42 ›› Issue (3): 119-130.DOI: 10.3969/j.issn.1001-909X.2024.03.010
邵志远1,2,3(), 赵杰臣1,2,4,*(), 解龙翔1,2,3, 牟芳如1,2, 肖静1,2, 刘敏君1,2, 陈雪婧1,2
收稿日期:
2023-10-08
修回日期:
2024-04-17
出版日期:
2024-09-15
发布日期:
2024-11-25
通讯作者:
*赵杰臣(1984—),男,副教授,主要从事极地海冰观测和数值预报研究,E-mail:zhaojiechen@hrbeu.edu.cn。
作者简介:
邵志远(1998—),男,江苏省灌南县人,主要从事极地遥感研究,E-mail:shaozhiyuan@hrbeu.edu.cn。
基金资助:
SHAO Zhiyuan1,2,3(), ZHAO Jiechen1,2,4,*(), XIE Longxiang1,2,3, MU Fangru1,2, XIAO Jing1,2, LIU Minjun1,2, CHEN Xuejing1,2
Received:
2023-10-08
Revised:
2024-04-17
Online:
2024-09-15
Published:
2024-11-25
摘要:
海冰类型是极地海冰的重要属性之一,多年冰的物理性质较一年冰有着显著差异,因此识别海冰类型对极地气候变化研究和冰区船舶航行保障意义重大。卫星遥感是获取多时序、大范围海冰信息的有效手段。该文以北极西北航道和东北航道为研究区域,基于3个深度学习模型(ResNet、Vision Transformer、Swin Transformer)对Sentinel-1卫星双极化合成孔径雷达影像进行海冰分类研究。 结果表明,8×8像素切片数据集的海冰分类效果优于其他尺寸切片数据集;对假彩色合成图像进行偏移量处理能够有效地减少噪声对海冰分类的影响;在3个深度学习模型中,Swin Transformer模型分类精度最高,整体准确率和Kappa系数均在98%以上。比较多年冰密集度数据发现,3个模型的结果与AMSR2的偏差均小于10%。
中图分类号:
邵志远, 赵杰臣, 解龙翔, 牟芳如, 肖静, 刘敏君, 陈雪婧. 基于深度学习和Sentinel-1卫星影像的北极海冰分类精度和影响因素[J]. 海洋学研究, 2024, 42(3): 119-130.
SHAO Zhiyuan, ZHAO Jiechen, XIE Longxiang, MU Fangru, XIAO Jing, LIU Minjun, CHEN Xuejing. Classification accuracy and influencing factors of Arctic sea ice based on deep learning and Sentinel-1 satellite imagery[J]. Journal of Marine Sciences, 2024, 42(3): 119-130.
图1 Sentinel-1影像的空间分布 (红色数字表示影像序号,红色框表示影像空间位置。)
Fig.1 The spatial distribution of Sentinel-1 images (The red number indicates the image serial number, and the red box indicates the image spatial position.)
序号 | 成像日期 | 经度 | 纬度 | 卫星 | 用途 |
---|---|---|---|---|---|
1 | 2021-10-27 | 131.45°W—111.54°W | 73.83°N —78.49°N | Sentinel-1B | 测试 |
2 | 2022-01-30 | 111.25°W—95.77°W | 70.29°N —74.80°N | Sentinel-1A | 测试 |
3 | 2022-01-31 | 72.80°W—58.44°W | 68.99°N —73.47°N | Sentinel-1A | 测试 |
4 | 2022-10-31 | 134.51°W—107.33°W | 76.85°N —81.92°N | Sentinel-1A | 训练 |
5 | 2022-10-31 | 140.17°W—124.76°W | 69.97°N —74.69°N | Sentinel-1A | 训练 |
6 | 2022-11-24 | 113.12°W—93.62°W | 73.58°N —78.22°N | Sentinel-1A | 训练 |
7 | 2022-11-26 | 111.20°W—95.77°W | 70.29°N —74.80°N | Sentinel-1A | 训练 |
8 | 2022-11-27 | 96.81°W—81.42°W | 70.25°N —74.76°N | Sentinel-1A | 训练 |
9 | 2023-01-18 | 86.97°W—68.44°W | 72.78°N —77.41°N | Sentinel-1A | 测试 |
10 | 2021-12-09 | 77.70°E—99.03°E | 77.24°N —82.11°N | Sentinel-1B | 测试 |
11 | 2022-01-16 | 59.76°E—79.41°E | 73.68°N —78.33°N | Sentinel-1A | 测试 |
12 | 2022-01-27 | 112.31°E—139.43°E | 76.82°N —81.90°N | Sentinel-1A | 训练 |
13 | 2022-01-27 | 109.03°E—128.43°E | 73.55°N —78.19°N | Sentinel-1A | 训练 |
14 | 2022-11-29 | 81.86°E—101.92°E | 73.00°N —78.31°N | Sentinel-1A | 训练 |
15 | 2022-12-10 | 39.32°E—52.06°E | 66.83°N —71.26°N | Sentinel-1A | 训练 |
16 | 2023-02-04 | 87.81°E—115.34°E | 76.98°N —82.06°N | Sentinel-1A | 测试 |
17 | 2023-02-20 | 131.25°E—151.36°E | 73.03°N —78.34°N | Sentinel-1A | 训练 |
18 | 2023-03-08 | 49.27°E—64.70°E | 72.78°N —77.41°N | Sentinel-1A | 测试 |
表1 Sentinel-1影像信息
Tab.1 The coding list of Sentinel-1 images
序号 | 成像日期 | 经度 | 纬度 | 卫星 | 用途 |
---|---|---|---|---|---|
1 | 2021-10-27 | 131.45°W—111.54°W | 73.83°N —78.49°N | Sentinel-1B | 测试 |
2 | 2022-01-30 | 111.25°W—95.77°W | 70.29°N —74.80°N | Sentinel-1A | 测试 |
3 | 2022-01-31 | 72.80°W—58.44°W | 68.99°N —73.47°N | Sentinel-1A | 测试 |
4 | 2022-10-31 | 134.51°W—107.33°W | 76.85°N —81.92°N | Sentinel-1A | 训练 |
5 | 2022-10-31 | 140.17°W—124.76°W | 69.97°N —74.69°N | Sentinel-1A | 训练 |
6 | 2022-11-24 | 113.12°W—93.62°W | 73.58°N —78.22°N | Sentinel-1A | 训练 |
7 | 2022-11-26 | 111.20°W—95.77°W | 70.29°N —74.80°N | Sentinel-1A | 训练 |
8 | 2022-11-27 | 96.81°W—81.42°W | 70.25°N —74.76°N | Sentinel-1A | 训练 |
9 | 2023-01-18 | 86.97°W—68.44°W | 72.78°N —77.41°N | Sentinel-1A | 测试 |
10 | 2021-12-09 | 77.70°E—99.03°E | 77.24°N —82.11°N | Sentinel-1B | 测试 |
11 | 2022-01-16 | 59.76°E—79.41°E | 73.68°N —78.33°N | Sentinel-1A | 测试 |
12 | 2022-01-27 | 112.31°E—139.43°E | 76.82°N —81.90°N | Sentinel-1A | 训练 |
13 | 2022-01-27 | 109.03°E—128.43°E | 73.55°N —78.19°N | Sentinel-1A | 训练 |
14 | 2022-11-29 | 81.86°E—101.92°E | 73.00°N —78.31°N | Sentinel-1A | 训练 |
15 | 2022-12-10 | 39.32°E—52.06°E | 66.83°N —71.26°N | Sentinel-1A | 训练 |
16 | 2023-02-04 | 87.81°E—115.34°E | 76.98°N —82.06°N | Sentinel-1A | 测试 |
17 | 2023-02-20 | 131.25°E—151.36°E | 73.03°N —78.34°N | Sentinel-1A | 训练 |
18 | 2023-03-08 | 49.27°E—64.70°E | 72.78°N —77.41°N | Sentinel-1A | 测试 |
区域 | 切片大小 | 准确率/% | 整体准确 率/% | Kappa 系数/% | ||
---|---|---|---|---|---|---|
海水 | 一年冰 | 多年冰 | ||||
2号 | 32×32像素 | 100.00 | 100.00 | 98.88 | 99.62 | 99.44 |
16×16像素 | 100.00 | 100.00 | 98.88 | 99.62 | 99.44 | |
8×8像素 | 99.25 | 100.00 | 99.88 | 99.71 | 99.63 | |
16号 | 32×32像素 | 100.00 | 100.00 | 97.50 | 99.17 | 98.75 |
16×16像素 | 100.00 | 99.63 | 99.38 | 99.67 | 99.50 | |
8×8像素 | 100.00 | 99.88 | 100.00 | 99.96 | 99.94 |
表2 不同尺寸切片影像分类结果评价
Tab.2 Evaluation for classification results of different slice size images
区域 | 切片大小 | 准确率/% | 整体准确 率/% | Kappa 系数/% | ||
---|---|---|---|---|---|---|
海水 | 一年冰 | 多年冰 | ||||
2号 | 32×32像素 | 100.00 | 100.00 | 98.88 | 99.62 | 99.44 |
16×16像素 | 100.00 | 100.00 | 98.88 | 99.62 | 99.44 | |
8×8像素 | 99.25 | 100.00 | 99.88 | 99.71 | 99.63 | |
16号 | 32×32像素 | 100.00 | 100.00 | 97.50 | 99.17 | 98.75 |
16×16像素 | 100.00 | 99.63 | 99.38 | 99.67 | 99.50 | |
8×8像素 | 100.00 | 99.88 | 100.00 | 99.96 | 99.94 |
区域 | 偏移量 处理情况 | 准确率/% | 整体准确 率/% | Kappa 系数/% | ||
---|---|---|---|---|---|---|
海水 | 一年冰 | 多年冰 | ||||
3号 | 未处理 | 99.88 | 99.63 | 77.63 | 92.37 | 88.56 |
处理后 | 99.25 | 100.00 | 100.00 | 99.83 | 99.75 | |
10号 | 未处理 | 99.75 | 95.75 | 96.38 | 97.29 | 95.94 |
处理后 | 99.25 | 100.00 | 100.00 | 99.75 | 99.63 |
表3 不同假彩色合成图像的海冰分类精度评价
Tab.3 Evaluation of classification accuracy of sea ice in different false color images
区域 | 偏移量 处理情况 | 准确率/% | 整体准确 率/% | Kappa 系数/% | ||
---|---|---|---|---|---|---|
海水 | 一年冰 | 多年冰 | ||||
3号 | 未处理 | 99.88 | 99.63 | 77.63 | 92.37 | 88.56 |
处理后 | 99.25 | 100.00 | 100.00 | 99.83 | 99.75 | |
10号 | 未处理 | 99.75 | 95.75 | 96.38 | 97.29 | 95.94 |
处理后 | 99.25 | 100.00 | 100.00 | 99.75 | 99.63 |
区域 | 深度学习模型 | 准确率/% | 整体准确率/% | Kappa系数/% | ||
---|---|---|---|---|---|---|
海水 | 一年冰 | 多年冰 | ||||
ResNet | 99.50 | 100.00 | 93.75 | 97.75 | 96.63 | |
1号 | Vision Transformer | 98.63 | 100.00 | 99.63 | 98.12 | 97.19 |
Swin Transformer | 97.50 | 100.00 | 100.00 | 99.17 | 98.75 | |
ResNet | 100.00 | 100.00 | 94.38 | 98.12 | 97.19 | |
2号 | Vision Transformer | 96.88 | 99.88 | 100.00 | 98.92 | 98.38 |
Swin Transformer | 99.25 | 100.00 | 99.88 | 99.71 | 99.63 | |
ResNet | 100.00 | 100.00 | 98.50 | 99.50 | 99.25 | |
3号 | Vision Transformer | 95.25 | 100.00 | 98.88 | 98.42 | 97.63 |
Swin Transformer | 99.25 | 100.00 | 100.00 | 99.75 | 99.63 | |
ResNet | 99.88 | 99.88 | 97.88 | 99.17 | 98.81 | |
9号 | Vision Transformer | 98.88 | 100.00 | 100.00 | 99.62 | 99.44 |
Swin Transformer | 99.88 | 99.88 | 99.25 | 99.67 | 99.50 | |
ResNet | 100.00 | 100.00 | 97.50 | 99.62 | 99.44 | |
10号 | Vision Transformer | 97.50 | 100.00 | 100.00 | 99.17 | 98.75 |
Swin Transformer | 99.50 | 100.00 | 100.00 | 99.75 | 99.63 | |
ResNet | 100.00 | 100.00 | 99.38 | 99.79 | 99.69 | |
11号 | Vision Transformer | 99.25 | 100.00 | 100.00 | 99.83 | 99.75 |
Swin Transformer | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | |
ResNet | 99.50 | 100.00 | 98.00 | 99.17 | 98.75 | |
16号 | Vision Transformer | 95.13 | 100.00 | 100.00 | 98.37 | 97.56 |
Swin Transformer | 100.00 | 99.88 | 100.00 | 99.96 | 99.94 | |
ResNet | 100.00 | 100.00 | 93.88 | 97.96 | 96.94 | |
18号 | Vision Transformer | 97.13 | 100.00 | 99.88 | 99.00 | 98.50 |
Swin Transformer | 98.63 | 100.00 | 99.63 | 99.42 | 99.13 |
表4 不同深度学习模型的海冰分类精度评价
Tab.4 Evaluation of classification accuracy of sea ice in different deep learning models
区域 | 深度学习模型 | 准确率/% | 整体准确率/% | Kappa系数/% | ||
---|---|---|---|---|---|---|
海水 | 一年冰 | 多年冰 | ||||
ResNet | 99.50 | 100.00 | 93.75 | 97.75 | 96.63 | |
1号 | Vision Transformer | 98.63 | 100.00 | 99.63 | 98.12 | 97.19 |
Swin Transformer | 97.50 | 100.00 | 100.00 | 99.17 | 98.75 | |
ResNet | 100.00 | 100.00 | 94.38 | 98.12 | 97.19 | |
2号 | Vision Transformer | 96.88 | 99.88 | 100.00 | 98.92 | 98.38 |
Swin Transformer | 99.25 | 100.00 | 99.88 | 99.71 | 99.63 | |
ResNet | 100.00 | 100.00 | 98.50 | 99.50 | 99.25 | |
3号 | Vision Transformer | 95.25 | 100.00 | 98.88 | 98.42 | 97.63 |
Swin Transformer | 99.25 | 100.00 | 100.00 | 99.75 | 99.63 | |
ResNet | 99.88 | 99.88 | 97.88 | 99.17 | 98.81 | |
9号 | Vision Transformer | 98.88 | 100.00 | 100.00 | 99.62 | 99.44 |
Swin Transformer | 99.88 | 99.88 | 99.25 | 99.67 | 99.50 | |
ResNet | 100.00 | 100.00 | 97.50 | 99.62 | 99.44 | |
10号 | Vision Transformer | 97.50 | 100.00 | 100.00 | 99.17 | 98.75 |
Swin Transformer | 99.50 | 100.00 | 100.00 | 99.75 | 99.63 | |
ResNet | 100.00 | 100.00 | 99.38 | 99.79 | 99.69 | |
11号 | Vision Transformer | 99.25 | 100.00 | 100.00 | 99.83 | 99.75 |
Swin Transformer | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | |
ResNet | 99.50 | 100.00 | 98.00 | 99.17 | 98.75 | |
16号 | Vision Transformer | 95.13 | 100.00 | 100.00 | 98.37 | 97.56 |
Swin Transformer | 100.00 | 99.88 | 100.00 | 99.96 | 99.94 | |
ResNet | 100.00 | 100.00 | 93.88 | 97.96 | 96.94 | |
18号 | Vision Transformer | 97.13 | 100.00 | 99.88 | 99.00 | 98.50 |
Swin Transformer | 98.63 | 100.00 | 99.63 | 99.42 | 99.13 |
[1] | KIM J W, KIM D J, HWANG B J. Characterization of Arctic sea ice thickness using high-resolution spaceborne polarimetric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(1): 13-22. |
[2] | HOSHINO S, TATEYAMA K, IZUMIYAMA K. Classification of ice in Lützow-Holm Bay, East Antarctica, using data from ASCAT and AMSR2[J]. Remote Sensing, 2020, 12(19):3179. |
[3] | 张晰. 极化SAR渤海海冰厚度探测研究[D]. 青岛: 中国海洋大学, 2011. |
ZHANG X. Research on sea ice thickness detection by polarimetric SAR in Bohai Sea[D]. Qingdao: Ocean University of China, 2011. | |
[4] | FARRELL S L, DUNCAN K, BUCKLEY E M, et al. Mapping sea ice surface topography in high fidelity with ICESat-2[J]. Geophysical Research Letters, 2020, 47(21): e2020GL090708. |
[5] | CAO X W, LU P, LEI R B, et al. Physical and optical characteristics of sea ice in the Pacific Arctic Sector during the summer of 2018[J]. Acta Oceanologica Sinica, 2020, 39(9): 25-37. |
[6] | DIERKING W, LANG O, BUSCHE T. Sea ice local surface topography from single-pass satellite InSAR measurements: A feasibility study[J]. The Cryosphere, 2017, 11(4): 1967-1985. |
[7] | RHEINLAENDER J W, DAVY R, ÓLASON E, et al. Driving mechanisms of an extreme winter sea ice breakup event in the Beaufort Sea[J]. Geophysical Research Letters, 2022, 49(12): e2022GL099024. |
[8] | 刘泉宏, 张韧, 汪杨骏, 等. 深度学习方法在北极海冰预报中的应用[J]. 大气科学学报, 2022, 45(1):14-21. |
LIU Q H, ZHANG R, WANG Y J, et al. Application of deep learning methods to Arctic Sea ice prediction[J]. Transactions of Atmospheric Sciences, 2022, 45(1): 14-21. | |
[9] | 刘启明, 杨树国, 赵莉. 基于深度卷积神经网络的海洋多目标涡旋检测方法[J]. 青岛科技大学学报:自然科学版, 2022, 43(4):120-126. |
LIU Q M, YANG S G, ZHAO L. Ocean multi-eddy detection method based on deep convolution neural network[J]. Journal of Qingdao University of Science and Technology: Natural Science Edition, 2022, 43(4): 120-126. | |
[10] | 崔艳荣. 卷积神经网络在渤海海冰卫星遥感中的应用[D]. 上海: 上海海洋大学, 2020. |
CUI Y R. Application of convolutional neural network in remote sensing of sea ice satellites in the Bohai Sea[D]. Shanghai: Shanghai Ocean University, 2020. | |
[11] | KHALEGHIAN S, ULLAH H, KRAEMER T, et al. Deep semisupervised teacher-student model based on label propagation for sea ice classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 10761-10772. |
[12] | 王芳. 基于Sentinel-1极化数据北冰洋海冰分类研究[D]. 北京: 中国地质大学, 2021. |
WANG F. Arctic sea ice classification based on Sentinel-1 polarization data[D]. Beijing: China University of Geos-ciences, 2021. | |
[13] | HAN Y L, GAO Y, ZHANG Y, et al. Hyperspectral sea ice image classification based on the spectral-spatial-joint feature with deep learning[J]. Remote Sensing, 2019, 11(18): 2170. |
[14] | 张赛, 樊博文, 禹定峰, 等. 基于多尺度融合网络的辽东湾海冰提取方法研究[J]. 海洋测绘, 2023, 43(1):68-72. |
ZHANG S, FAN B W, YU D F, et al. Research on sea ice extraction method of Liaodong Bay based on multi-scale fusion network[J]. Hydrographic Surveying and Charting, 2023, 43(1): 68-72. | |
[15] | 李金鑫. 基于卷积神经网络的SAR图像分类[D]. 长春: 吉林大学, 2018. |
LI J X. SAR image classification based on convolutional neural network[D]. Changchun: Jilin University, 2018. | |
[16] | HAN Y L, WEI C, ZHOU R Y, et al. Combining 3D-CNN and squeeze-and-excitation networks for remote sensing sea ice image classification[J]. Mathematical Problems in Engineering, 2020: 8065396. |
[17] | HAN Y L, LIU Y K, HONG Z H, et al. Sea ice image classification based on heterogeneous data fusion and deep learning[J]. Remote Sensing, 2021, 13(4): 592. |
[18] | PETROU Z I, TIAN Y L. Prediction of sea ice motion with convolutional long short-term memory networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9): 6865-6876. |
[19] | 焦艳, 黄菲, 高松, 等. 基于长短时记忆神经网络的辽东湾海冰延伸期预报方法研究[J]. 中国海洋大学学报:自然科学版, 2020, 50(6):1-11. |
JIAO Y, HUANG F, GAO S, et al. Research on extended-range forecast model of sea ice in the Liaodong Bay based on long short term memory network[J]. Periodical of Ocean University of China, 2020, 50(6): 1-11. | |
[20] | LIU Q H, ZHANG R, WANG Y J, et al. Daily prediction of the Arctic sea ice concentration using reanalysis data based on a convolutional LSTM network[J]. Journal of Marine Science and Engineering, 2021, 9(3): 330. |
[21] | ZHENG Q Y, LI W, SHAO Q, et al. A mid- and long-term Arctic sea ice concentration prediction model based on deep learning technology[J]. Remote Sensing, 2022, 14(12): 2889. |
[22] | WEI J F, HANG R L, LUO J J. Prediction of Pan-Arctic sea ice using attention-based LSTM neural networks[J]. Frontiers in Marine Science, 2022, 9: 860403. |
[23] | 李明慧. 基于深度学习的SAR影像海冰分类研究[D]. 上海: 上海海洋大学, 2019. |
LI M H. Sea ice classification based on deep learning with SAR imagery[D]. Shanghai: Shanghai Ocean University, 2019. | |
[24] |
葛梦滢, 高稳, 祝敏, 等. 基于SE-ConvLSTM的时空特征融合SAR图像海冰分类[J]. 遥感技术与应用, 2023, 38(6):1306-1316.
DOI |
GE M Y, GAO W, ZHU M, et al. Sea ice classification of SAR images based on SE-ConvLSTM spatial-temporal feature fusion[J]. Remote Sensing Technology and Application, 2023, 38(6): 1306-1316. | |
[25] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 2017. |
[26] | MU B, LUO X D, YUAN S J, et al. IceTFT v1.0.0: Interpretable long-term prediction of Arctic sea ice extent with deep learning[J]. Geoscientific Model Development, 2023, 16(16): 4677-4697. |
[27] | 刘剑锋, 郜利康, 赫晓慧, 等. 结合卷积网络与注意力机制的冰凌提取算法[J]. 遥感信息, 2023, 38(4):49-56. |
LIU J F, GAO L K, HE X H, et al. Combining CNN with self-attention mechanism for ice extraction[J]. Remote Sensing Information, 2023, 38(4): 49-56. | |
[28] | SUDAKOW I, ASARI V K, LIU R X, et al. MeltPondNet: A swin transformer U-Net for detection of melt ponds on Arctic sea ice[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 8776-8784. |
[29] | ZHU Q, GUO H D, ZHANG L, et al. GLA-STDeepLab: SAR enhancing glacier and ice shelf front detection using Swin-TransDeepLab with global-local attention[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5218113. |
[30] | LIU Z, LIN Y T, CAO Y, et al. Swin Transformer: Hierarchical vision Transformer using shifted windows[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, QC, Canada. IEEE, 2021: 9992-10002. |
[31] | SHI W T, XU J, GAO P. SSformer: A lightweight transformer for semantic segmentation[C]// IEEE 24th International Workshop on Multimedia Signal Processing (MMSP). Shanghai, China. IEEE, 2022. |
[32] | DAN Y P, ZHU Z N, JIN W S, et al. S-Swin Transformer: Simplified Swin Transformer model for offline handwritten Chinese character recognition[J]. PeerJ Computer Science, 2022, 8: e1093. |
[33] | ZHU Y P, LU S. Swin-VoxelMorph: A symmetric unsuper-vised learning model for deformable medical image registration using Swin Transformer[C]// Medical Image Computing and Computer-Assisted Intervention-MICCAI, 2022, 13436:78-87. |
[34] | 于皓, 田忠翔, 李春花. 基于Sentinel-1双极化数据的北极海域假彩色图像合成方法[J]. 海洋预报, 2022, 39(5):60-69. |
YU H, TIAN Z X, LI C H. A method of synthesizing RGB pseudo color images based on Sentinel-1 dual-polarization data in the Arctic[J]. Marine Forecasts, 2022, 39(5): 60-69. | |
[35] | ZHANG J D, ZHANG W Y, HU Y X, et al. An improved sea ice classification algorithm with Gaofen-3 dual-polarization SAR data based on deep convolutional neural networks[J]. Remote Sensing, 2022, 14(4): 906. |
[36] | 张珂, 冯晓晗, 郭玉荣, 等. 图像分类的深度卷积神经网络模型综述[J]. 中国图象图形学报, 2021, 26(10):2305-2325. |
ZHANG K, FENG X H, GUO Y R, et al. Overview of deep convolutional neural net-works for image classification[J]. Journal of lmage and Graphics, 2021, 26(10): 2305-2325. | |
[37] |
刘文婷, 卢新明. 基于计算机视觉的Transformer研究进展[J]. 计算机工程与应用, 2022, 58(6):1-16.
DOI |
LIU W T, LU X M. Research progress of Transformer based on computer vision[J]. Computer Engineering and Applications, 2022, 58(6): 1-16.
DOI |
[1] | 陈建珩, 许东峰, 姚志雄. 利用机器学习模型预测中国沿海海平面变化[J]. 海洋学研究, 2024, 42(3): 108-118. |
[2] | 王智弘, 屈科, 杨元平, 王旭, 高榕泽. 卷积神经网络方法在涌潮水动力特性演变中的应用研究[J]. 海洋学研究, 2024, 42(3): 131-141. |
[3] | 董昌明, 王子韵, 谢华荣, 徐广珺, 韩国庆, 周书逸, 谢文鸿, 沈向宇, 韩磊. 人工智能海洋学发展前景[J]. 海洋学研究, 2024, 42(3): 2-27. |
[4] | 陆钰婷, 郭文康, 丁骏, 王林峰, 李晓辉, 王久珂. 人工智能海浪预报的发展与挑战[J]. 海洋学研究, 2024, 42(3): 28-37. |
[5] | 徐广珺, 施宇诚, 余洋, 谢华荣, 谢文鸿, 刘婧媛, 林夏艳, 刘宇, 董昌明. 海洋涡旋智能检测研究进展[J]. 海洋学研究, 2024, 42(3): 38-50. |
[6] | 郑梦轲, 方巍, 张霄智. 深度学习在印度洋偶极子预测中的应用研究综述[J]. 海洋学研究, 2024, 42(3): 51-63. |
[7] | 邸雅楠, 赵若轩, 徐建洲. 基于深度学习的生物组织病理图像分析在海洋监测中的发展潜力及案例分析[J]. 海洋学研究, 2024, 42(3): 64-74. |
[8] | 倪晗玥, 董昌明, 刘振波, 杨劲松, 李晓辉, 任林. 基于BP神经网络模型的哨兵SAR反演风速偏差校正[J]. 海洋学研究, 2024, 42(3): 75-87. |
[9] | 金阳, 韩磊, 金梅兵, 董昌明. 基于ConvLSTM的中国东南沿海波浪智能预报和评估[J]. 海洋学研究, 2024, 42(3): 88-98. |
[10] | 张勇勇. 基于GF5-AHSI遥感数据的横沙浅海水深反演[J]. 海洋学研究, 2022, 40(2): 93-101. |
[11] | 方玥炜, 唐佑民, 李俊德, 刘婷. 几种统计模型对热带印度洋海温异常的预报[J]. 海洋学研究, 2018, 36(1): 1-15. |
[12] | 胡昊, 许冬, 龙江平, 周勐佳, 唐博, 金路. 北部湾海底沉积物稀土元素与影响因子关系的BP神经网络定量分析[J]. 海洋学研究, 2016, 34(1): 18-26. |
[13] | 李露锋, 刘湘南, 李致博, 弥永宏. 珠江口海域叶绿素α质量浓度SAR反演模型[J]. 海洋学研究, 2012, 30(2): 66-73. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||