海洋学研究 ›› 2024, Vol. 42 ›› Issue (3): 142-152.DOI: 10.3969/j.issn.1001-909X.2024.03.012
• 研究论文 • 上一篇
刘洋1,2(), 李三忠1,2,*(), 邹卓延1,2, 索艳慧1,2, 孙毅1,2
收稿日期:
2023-09-27
修回日期:
2024-05-22
出版日期:
2024-09-15
发布日期:
2024-11-25
通讯作者:
*李三忠(1968—),男,教授,主要从事海底科学与地球系统动力学研究,E-mail:sanzhong@ouc.edu.cn。
作者简介:
刘洋(1997—),男,湖北省阳新县人,主要从事海洋地质方面的研究,E-mail:liuyang9553@stu.ouc.edu.cn。
基金资助:
LIU Yang1,2(), LI Sanzhong1,2,*(), ZOU Zhuoyan1,2, SUO Yanhui1,2, SUN Yi1,2
Received:
2023-09-27
Revised:
2024-05-22
Online:
2024-09-15
Published:
2024-11-25
摘要:
海底地形具有非常重要的商业、工程、军事和科学研究价值。目前,常用重力场数据反演海底地形,如自由空气重力异常和垂直重力梯度。然而,由于现有方法反演海底地形具有较强的多解性,仍然无法准确获取高精度的海底地形。该文提出了重力-密度法与随机森林结合的数据-知识驱动新方法,以重建准确的海底地形。该方法在中国南海海域进行了测试,并与重力-密度法、随机森林以及现有的SIO模型进行了对比分析。反演结果显示,数据-知识驱动提供了更好的反演性能,随机森林和重力-密度法次之,SIO模型最差。相比于重力-密度法,数据-知识驱动的平均绝对误差、平均相对误差和均方根误差分别降低了21%、25%和7%;而相比于随机森林,它们分别也降低了20%、20%和20%。此外,数据-知识驱动模型与船载测深数据具有较高的一致性,其差值大约有72%分布在±10 m范围内,占比高于其他三种模型。该结果证明了数据-知识驱动方法在海底地形反演中的可行性和有效性,有助于加快高精度海底地形的绘制。
中图分类号:
刘洋, 李三忠, 邹卓延, 索艳慧, 孙毅. 基于数据-知识驱动的高精度海底地形绘制:以南海为例[J]. 海洋学研究, 2024, 42(3): 142-152.
LIU Yang, LI Sanzhong, ZOU Zhuoyan, SUO Yanhui, SUN Yi. High-precision seafloor topographic mapping based on data-knowledge-driven: An example from the South China Sea[J]. Journal of Marine Sciences, 2024, 42(3): 142-152.
图1 船载测深数据分布 (蓝色点和橙色点分别代表控制点和检查点,背景为SIOv25.1的水深模型。)
Fig.1 Distribution of shipboard bathymetric data (The blue and orange points represent control and check points, respec-tively, with the bathymetric model of SIOv25.1 in the background.)
特征参数 | 最大值 | 最小值 | 平均值 | 标准差 |
---|---|---|---|---|
自由空气重力异常/mGal | 207.90 | -60.64 | 4.87 | 19.66 |
垂直重力梯度/E | 281.23 | -114.34 | 0.34 | 19.97 |
均衡重力异常/mGal | 80.38 | -97.52 | 14.13 | 18.56 |
磁异常/nT | 217.55 | -172.32 | 5.95 | 43.39 |
表1 研究区地球物理数据的统计分析
Tab.1 Statistical analysis of geophysical data in the study area
特征参数 | 最大值 | 最小值 | 平均值 | 标准差 |
---|---|---|---|---|
自由空气重力异常/mGal | 207.90 | -60.64 | 4.87 | 19.66 |
垂直重力梯度/E | 281.23 | -114.34 | 0.34 | 19.97 |
均衡重力异常/mGal | 80.38 | -97.52 | 14.13 | 18.56 |
磁异常/nT | 217.55 | -172.32 | 5.95 | 43.39 |
图4 不同密度差异常数下重力-密度法与船载测深之间的相关系数和标准差
Fig.4 Correlation coefficients and standard deviations between gravity-density method and shipboard bathymetry for different density difference constants
参数 | 最优值 | |
---|---|---|
数据驱动 | 数据-知识驱动 | |
n_eatimators | 1 000 | 1 000 |
max_depth | 60 | 50 |
max_features | 4 | 3 |
min_samples_leaf | 1 | 2 |
min_samples_split | 2 | 2 |
表2 基于两种驱动方式的随机森林的最优参数
Tab.2 Optimal parameters for random forests based on two driving methods
参数 | 最优值 | |
---|---|---|
数据驱动 | 数据-知识驱动 | |
n_eatimators | 1 000 | 1 000 |
max_depth | 60 | 50 |
max_features | 4 | 3 |
min_samples_leaf | 1 | 2 |
min_samples_split | 2 | 2 |
评估指标 | SIO | 重力-密度法 | 随机森林 | 数据-知识驱动 |
---|---|---|---|---|
平均绝对误差/m | 83.18±138.66 | 24.86±51.85 | 24.51±62.02 | 19.65±49.59 |
平均相对误差/% | 3.47±7.17 | 1.09±4.07 | 1.03±4.09 | 0.82±3.81 |
均方根误差/m | 161.69 | 57.50 | 66.68 | 53.34 |
相关系数 | 0.990 5 | 0.998 8 | 0.998 4 | 0.999 0 |
表3 四种模型的评估指标
Tab.3 Evaluation indexes for the four models
评估指标 | SIO | 重力-密度法 | 随机森林 | 数据-知识驱动 |
---|---|---|---|---|
平均绝对误差/m | 83.18±138.66 | 24.86±51.85 | 24.51±62.02 | 19.65±49.59 |
平均相对误差/% | 3.47±7.17 | 1.09±4.07 | 1.03±4.09 | 0.82±3.81 |
均方根误差/m | 161.69 | 57.50 | 66.68 | 53.34 |
相关系数 | 0.990 5 | 0.998 8 | 0.998 4 | 0.999 0 |
[1] | WÖLFL A C, SNAITH H, AMIREBRAHIMI S, et al. Seafloor mapping-the challenge of a truly global ocean bathymetry[J]. Frontiers in Marine Science, 2019, 6: 283. |
[2] | SANDWELL D T, SMITH W H, GILLE S, et al. Bathymetry from space: White paper in support of a high-resolution, ocean altimeter mission[J]. International Geophysics Series, 2001, 69: 1049-1062. |
[3] | SMITH W. Introduction to this special issue on bathymetry from space[J]. Oceanography, 2004, 17(1): 6-7. |
[4] | PEERI S, GARDNER J V, WARD L G, et al. The seafloor: A key factor in lidar bottom detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(3): 1150-1157. |
[5] | EUGENIO F, MARCELLO J, MARTIN J. High-resolution maps of bathymetry and benthic habitats in shallow-water environments using multispectral remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(7): 3539-3549. |
[6] | 黄谟涛, 翟国君, 欧阳永忠, 等. 卫星测高技术应用研究回顾与展望[J]. 海洋测绘, 2004, 24(4):65-70. |
HUANG M T, ZHAI G J, OU-YANG Y Z, et al. Review and prospect of application study in altimetry[J]. Hydrographic Surveying and Charting, 2004, 24(4): 65-70. | |
[7] | CALMANT S, BERGE-NGUYEN M, CAZENAVE A. Global seafloor topography from a least-squares inversion of altimetry-based high-resolution mean sea surface and shipboard soundings[J]. Geophysical Journal International, 2002, 151(3): 795-808. |
[8] | TOZER B, SANDWELL D T, SMITH W H F, et al. Global bathymetry and topography at 15Arc Sec: SRTM15+[J]. Earth and Space Science, 2019, 6(10): 1847-1864. |
[9] | AMANTE C, EAKINS B W. ETOPO1 arc-minute global relief model: Procedures, data sources and analysis[R]//NOAA Technical Memorandum NESDIS NGDC-24. NOAA, National Geophysical Data Center, 2009. |
[10] | MARKS K M, SMITH W H F, SANDWELL D T. Evolution of errors in the altimetric bathymetry model used by Google Earth and GEBCO[J]. Marine Geophysical Researches, 2010, 31(3): 223-238. |
[11] | SMITH W H F, SANDWELL D T. Global sea floor topography from satellite altimetry and ship depth soundings[J]. Science, 1997, 277(5334): 1956-1962. |
[12] | ANDERSEN O B, KNUDSEN P. The DNSC08BAT bathy-metry developed from satellite altimetry[C]// Proceedings of the EGU-2008 Meeting: Vienna, Austria, 2008. |
[13] | BECKER J J, SANDWELL D T, SMITH W H F, et al. Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS[J]. Marine Geodesy, 2009, 32(4): 355-371. |
[14] |
胡敏章, 张胜军, 金涛勇, 等. 新一代全球海底地形模型BAT_WHU2020[J]. 测绘学报, 2020, 49(8):939-954.
DOI |
HU M Z, ZHANG S J, JIN T Y, et al. A new generation of global bathymetry model BAT_WHU2020[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(8): 939-954.
DOI |
|
[15] | HSIAO Y S, KIM J W, KIM K B, et al. Bathymetry estimation using the gravity-geologic method: An investi-gation of density contrast predicted by the downward continuation method[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2011, 22(3): 347. |
[16] | KIM J W, VON FRESE R R B, LEE B Y, et al. Altimetry-derived gravity predictions of bathymetry by the gravity-geologic method[J]. Pure and Applied Geophysics, 2011, 168(5): 815-826. |
[17] | 欧阳明达. 利用海洋重力数据反演海底地形的理论与方法[D]. 郑州: 解放军信息工程大学, 2015. |
OU-YANG M D. Theory and method of inversion of seabed topography using marine gravity data[D]. Zhengzhou: PLA Information Engineering University, 2015. | |
[18] | MCNUTT M. Compensation of oceanic topography: An application of the response function technique to the surveyor area[J]. Journal of Geophysical Research: Solid Earth, 1979, 84(B13): 7589-7598. |
[19] | ARABELOS D, TZIAVOS I N. Gravity-field improvement in the Mediterranean Sea by estimating the bottom topography using collocation[J]. Journal of Geodesy, 1998, 72(3): 136-143. |
[20] | KIM K B, HSIAO Y S, KIM J W, et al. Bathymetry enhancement by altimetry-derived gravity anomalies in the East Sea (Sea of Japan)[J]. Marine Geophysical Researches, 2010, 31(4): 285-298. |
[21] | 李倩倩, 鲍李峰. 测高重力场反演海底地形方法比较[J]. 海洋测绘, 2016, 36(5):1-4,18. |
LI Q Q, BAO L F. Comparative analysis of methods for bathymetry prediction from altimeter-derived gravity anomalies[J]. Hydrographic Surveying and Charting, 2016, 36(5): 1-4, 18. | |
[22] | 胡敏章, 李建成, 金涛勇. 应用重力地质方法反演皇帝海山的海底地形[J]. 武汉大学学报:信息科学版, 2012, 37(5):610-612,629. |
HU M Z, LI J C, JIN T Y. Bathymetry inversion with gravity-geologic method in Emperor Seamount[J]. Geomatics and Information Science of Wuhan University, 2012, 37(5): 610-612, 629. | |
[23] | 王永康, 周兴华, 唐秋华, 等. 应用重力地质法反演马里亚纳海沟地形[J]. 海洋科学进展, 2020, 38(4):708-716. |
WANG Y K, ZHOU X H, TANG Q H, et al. Predicting bathymetry in Mariana trench using gravity-geologic method[J]. Advances in Marine Science, 2020, 38(4): 708-716. | |
[24] |
欧阳明达, 孙中苗, 翟振和. 基于重力地质法的南中国海海底地形反演[J]. 地球物理学报, 2014, 57(9):2756-2765.
DOI |
OU-YANG M D, SUN Z M, ZHAI Z H. Predicting bathymetry in South China Sea using the gravity-geologic method[J]. Chinese Journal of Geophysics, 2014, 57(9): 2756-2765. | |
[25] | ANNAN R F, WAN X Y. Recovering bathymetry of the gulf of Guinea using altimetry-derived gravity field products combined via convolutional neural network[J]. Surveys in Geophysics, 2022, 43(5): 1541-1561. |
[26] | SUN Y J, ZHENG W, LI Z W, et al. Improved the accuracy of seafloor topography from altimetry-derived gravity by the topography constraint factor weight optimization method[J]. Remote Sensing, 2021, 13(12): 2277. |
[27] | AN D C, GUO J Y, LI Z, et al. Improved gravity-geologic method reliably removing the long-wavelength gravity effect of regional seafloor topography: A case of bathymetric prediction in the South China Sea[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4211912. |
[28] | CALMANT S, BAUDRY N. Modelling bathymetry by inverting satellite altimetry data: A review[J]. Marine Geophysical Researches, 1996, 18(2): 123-134. |
[29] | WANG Y M. Predicting bathymetry from the earth’s gravity gradient anomalies[J]. Marine Geodesy, 2000, 23(4): 251-258. |
[30] | REICHSTEIN M, CAMPS-VALLS G, STEVENS B, et al. Deep learning and process understanding for data-driven earth system science[J]. Nature, 2019, 566(7743): 195-204. |
[31] | SHEN C P, APPLING A, GENTINE P, et al. Differentiable modelling to unify machine learning and physical models for geosciences[J]. Nature Reviews Earth & Environment, 2023, 4: 552-567. |
[32] | YANG L, LIU M, LIU N, et al. Recovering bathymetry from satellite altimetry-derived gravity by fully connected deep neural network[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 1502805. |
[33] | CHEN Y, ZHANG D. Integration of knowledge and data in machine learning[Z/OL]. arXiv, 2022: 2202. 10337. https://arxiv.org/abs/2202.10337. |
[34] | KARPATNE A, ATLURI G, FAGHMOUS J H, et al. Theory-guided data science: A new paradigm for scientific discovery from data[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(10): 2318-2331. |
[35] | GETTELMAN A, GEER A J, FORBES R M, et al. The future of earth system prediction: Advances in model-data fusion[J]. Science Advances, 2022, 8(14): eabn3488. |
[36] | MENG C Z, SEO S, CAO D F, et al. When physics meets machine learning: A survey of physics-informed machine learning[Z/OL]. arXiv, 2022: 2203. 16797. https://arxiv.org/abs/2203.16797v1. |
[37] |
MORTON B, BLACKMORE G. South China Sea[J]. Marine Pollution Bulletin, 2001, 42(12): 1236-1263.
PMID |
[38] | WANG A M, DU Y, PENG S Q, et al. Deep water characteristics and circulation in the South China Sea[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2018, 134: 55-63. |
[39] |
SANDWELL D T, MÜLLER R D, SMITH W H F, et al. Marine geophysics. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure[J]. Science, 2014, 346(6205): 65-67.
DOI PMID |
[40] | BALMINO G, VALES N, BONVALOT S, et al. Spherical harmonic modelling to ultra-high degree of Bouguer and isostatic anomalies[J]. Journal of Geodesy, 2012, 86(7): 499-520. |
[41] | MAUS S, BARCKHAUSEN U, BERKENBOSCH H, et al. EMAG2: A 2-arc min resolution earth magnetic anomaly grid compiled from satellite, airborne, and marine magnetic measurements[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(8). https://doi.org/10.1029/2009GC002471. |
[42] | PARKER R L. The rapid calculation of potential anomalies[J]. Geophysical Journal International, 1973, 31(4): 447-455. |
[43] | HWANG C. A bathymetric model for the South China sea from satellite altimetry and depth data[J]. Marine Geodesy, 1999, 22(1): 37-51. |
[44] | KIM K B, YUN H S. Satellite-derived bathymetry prediction in shallow waters using the gravity-geologic method: A case study in the west sea of Korea[J]. KSCE Journal of Civil Engineering, 2018, 22(7): 2560-2568. |
[45] | HSIAO Y S, HWANG C, CHENG Y S, et al. High-resolution depth and coastline over major atolls of South China Sea from satellite altimetry and imagery[J]. Remote Sensing of Environment, 2016, 176: 69-83. |
[46] | STRYKOWSKI G, BOSCHETTI F, PAPP G. Estimation of the mass density contrasts and the 3D geometrical shape of the source bodies in the Yilgarn area, Eastern Goldfields, Western Australia[J]. Journal of Geodynamics, 2005, 39: 444-460. |
[47] | BREIMAN L. Random forests[J]. Machine Learning, 2001, 45: 5-32. |
[1] | 陆钰婷, 郭文康, 丁骏, 王林峰, 李晓辉, 王久珂. 人工智能海浪预报的发展与挑战[J]. 海洋学研究, 2024, 42(3): 28-37. |
[2] | 金阳, 韩磊, 金梅兵, 董昌明. 基于ConvLSTM的中国东南沿海波浪智能预报和评估[J]. 海洋学研究, 2024, 42(3): 88-98. |
[3] | 罗通, 洪加诚. 基于机器学习的热带气旋快速增强预报[J]. 海洋学研究, 2024, 42(3): 99-107. |
[4] | 游高冲, 郭杭, 罗孝文, 等. 基于LS-SVM的多系统融合GNSS-MR潮位反演[J]. 海洋学研究, 2022, 40(1): 72-. |
[5] | 张莹, 谭艳春, 彭发定, 廖杏杰, 余昱昕. 基于EEMD和ARIMA的海温预测模型研究[J]. 海洋学研究, 2019, 37(1): 9-14. |
[6] | 姚才华, 吴自银. 30a来伶仃洋海岸线变迁及海底冲淤变化[J]. 海洋学研究, 2012, 30(3): 89-100. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||