海洋学研究 ›› 2024, Vol. 42 ›› Issue (3): 142-152.DOI: 10.3969/j.issn.1001-909X.2024.03.012

• 研究论文 • 上一篇    

基于数据-知识驱动的高精度海底地形绘制:以南海为例

刘洋1,2(), 李三忠1,2,*(), 邹卓延1,2, 索艳慧1,2, 孙毅1,2   

  1. 1.中国海洋大学 海洋地球科学学院,深海圈层与地球系统教育部前沿科学中心,海底科学与探测技术教育部重点实验室,山东 青岛 266100
    2.崂山实验室 海洋矿产资源评价与探测技术功能实验室,山东 青岛 266237
  • 收稿日期:2023-09-27 修回日期:2024-05-22 出版日期:2024-09-15 发布日期:2024-11-25
  • 通讯作者: *李三忠(1968—),男,教授,主要从事海底科学与地球系统动力学研究,E-mail:sanzhong@ouc.edu.cn
  • 作者简介:刘洋(1997—),男,湖北省阳新县人,主要从事海洋地质方面的研究,E-mail:liuyang9553@stu.ouc.edu.cn
  • 基金资助:
    青岛海洋科学与技术试点国家实验室山东省专项经费项目(2022QNLM05032);国家自然科学基金项目(42121005);国家自然科学基金项目(91958214);山东省自然科学基金项目(ZR2021ZD09);111项目(B20048)

High-precision seafloor topographic mapping based on data-knowledge-driven: An example from the South China Sea

LIU Yang1,2(), LI Sanzhong1,2,*(), ZOU Zhuoyan1,2, SUO Yanhui1,2, SUN Yi1,2   

  1. 1. Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Submarine Geosciences and Prospecting Techniques, MOE and College of Marine Geosciences, Ocean University of China, Qingdao 266100, China
    2. Laboratory for Marine Mineral Resources, Laoshan Laboratory, Qingdao 266237, China
  • Received:2023-09-27 Revised:2024-05-22 Online:2024-09-15 Published:2024-11-25

摘要:

海底地形具有非常重要的商业、工程、军事和科学研究价值。目前,常用重力场数据反演海底地形,如自由空气重力异常和垂直重力梯度。然而,由于现有方法反演海底地形具有较强的多解性,仍然无法准确获取高精度的海底地形。该文提出了重力-密度法与随机森林结合的数据-知识驱动新方法,以重建准确的海底地形。该方法在中国南海海域进行了测试,并与重力-密度法、随机森林以及现有的SIO模型进行了对比分析。反演结果显示,数据-知识驱动提供了更好的反演性能,随机森林和重力-密度法次之,SIO模型最差。相比于重力-密度法,数据-知识驱动的平均绝对误差、平均相对误差和均方根误差分别降低了21%、25%和7%;而相比于随机森林,它们分别也降低了20%、20%和20%。此外,数据-知识驱动模型与船载测深数据具有较高的一致性,其差值大约有72%分布在±10 m范围内,占比高于其他三种模型。该结果证明了数据-知识驱动方法在海底地形反演中的可行性和有效性,有助于加快高精度海底地形的绘制。

关键词: 海底地形, 机器学习, 数据驱动, 知识驱动, 重力-密度法, 随机森林, SIO模型, 船载测深

Abstract:

Seafloor topography is of considerable value in commercial, engineering, military and scientific research. Currently, gravity field data, such as free air gravity anomalies and vertical gravity gradients, are commonly used to inverse seafloor topography. However, due to the strong multi-resolution of the existing methods to inverse seafloor topography, it is still impossible to obtain accurate high-precision seafloor topography. A new data-knowledge-driven method was proposed to reconstruct accurate seafloor topography, which combines the gravity-density method with random forests. This method was applied to the South China Sea and compared with the gravity-density, random forest, and existing SIO models. The inversion results show that the data-knowledge-driven method provides better inversion performance, followed by the random forest and gravity-density methods, and the SIO model is the worst. The mean absolute error, mean relative error and root mean square error of the data-knowledge-driven are reduced by 21%, 25% and 7%, respectively, compared to those of the gravity-density method, while they are also reduced by 20%, 20% and 20%, respectively, compared to those of the random forest. In addition, the data-knowledge-driven model has a high degree of agreement with the shipboard bathymetry data, with approximately 72% of its differences distributed within ±10 m, which is higher than that of the other three models. The results demonstrate the feasibility and effectiveness of the data-knowledge-driven approach in seafloor topography inversion, which helps to accelerate the mapping of high-precision seafloor topography.

Key words: seafloor topography, machine learning, data-driven, knowledge-driven, gravity-density method, random forest, SIO model, shipboard bathymetry

中图分类号: