海洋学研究 ›› 2024, Vol. 42 ›› Issue (3): 2-27.DOI: 10.3969/j.issn.1001-909X.2024.03.001
董昌明1,2,3(), 王子韵2, 谢华荣2, 徐广珺4, 韩国庆5, 周书逸6, 谢文鸿7, 沈向宇2, 韩磊8
收稿日期:
2023-10-08
修回日期:
2024-02-23
出版日期:
2024-09-15
发布日期:
2024-11-25
作者简介:
董昌明(1967—),男,安徽省宣城市人,教授,主要从事人工智能海洋学研究,E-mail:cmdong@nuist.edu.cn。
基金资助:
DONG Changming1,2,3(), WANG Ziyun2, XIE Huarong2, XU Guangjun4, HAN Guoqing5, ZHOU Shuyi6, XIE Wenhong7, SHEN Xiangyu2, HAN Lei8
Received:
2023-10-08
Revised:
2024-02-23
Online:
2024-09-15
Published:
2024-11-25
摘要:
随着海洋观测数据和数值模式产品的爆发式增长,人工智能方法在海洋学研究中展现出巨大的潜能。该文首先回顾了海洋大数据科学的发展历程,并详细介绍了人工智能在海洋现象识别、海洋要素与现象预报、海洋动力参数估算、海洋预报误差订正和海洋动力方程求解中的研究现状。具体地,阐述了海洋涡旋、海洋内波和海冰等海洋现象的智能识别研究,海面温度、厄尔尼诺-南方涛动、风暴潮、海浪和海流的智能预测研究,数值模式中海洋湍流过程参数化方案的智能估算研究以及海浪、海流等海洋现象预报误差的智能订正研究。此外,还讨论了物理机制融合和傅里叶神经算子在海洋运动方程智能求解中的研究进展。该文立足于当前人工智能海洋学的发展现状,旨在全面展示人工智能技术在海洋学领域的优势和潜力,并聚焦于海洋数字孪生和人工智能大模型两个新兴的研究热点,展望未来人工智能海洋学的发展方向,为海洋学者提供启示和参考。
中图分类号:
董昌明, 王子韵, 谢华荣, 徐广珺, 韩国庆, 周书逸, 谢文鸿, 沈向宇, 韩磊. 人工智能海洋学发展前景[J]. 海洋学研究, 2024, 42(3): 2-27.
DONG Changming, WANG Ziyun, XIE Huarong, XU Guangjun, HAN Guoqing, ZHOU Shuyi, XIE Wenhong, SHEN Xiangyu, HAN Lei. Prospect of artificial intelligence in oceanography[J]. Journal of Marine Sciences, 2024, 42(3): 2-27.
图3 前馈神经网络重构的2016年1月全球盐度异常的空间分布 (图件改绘自文献[27]。图a为盐度异常(IAP 0.25°);图b为盐度异常(IAP 1°);图c为盐度异常(ARMOR3D);图d为盐度异常(实观测资料);图e为盐度异常(IAP 0.25°减 IAP 1°在100 m);图f为ADT异常(遥感资料);图g为SST异常(遥感资料)。)
Fig.3 Spatial distribution of global salinity anomalies in January 2016 reconstructed by feedforward neural networks (Figure is repainted from reference [27]. Fig.a shows the salinity anomaly (IAP 0.25°); Fig.b shows the salinity anomaly (IAP 1°); Fig.c shows the salinity anomaly (ARMOR3D); Fig.d shows the salinity anomaly (observations); Fig.e shows the salinity anomaly (IAP 0.25° minus IAP 1° at 100 m); Fig.f shows the ADT anomaly (remote sensing); Fig.g shows the SST anomaly (remote sensing).)
图4 CNN模型中ENSO预测的相关系数 (图件改绘自文献[72]。图a为CNN模型(红色)、SINTEX-F动态预测系统(蓝色)和北美多模式集成项目中包含的动态预测系统(其他颜色)3个月滑动平均Ni?o3.4指数的全季节相关系数;图b和图c为CNN模型(b)和SINTEX-F动态预测系统(c)中预测每月的Ni?o3.4指数与提前预测时间的相关系数,阴影线突出显示了相关系数超过0.5的预测。)
Fig.4 Correlation coefficients for ENSO forecasts using the CNN model (Figure is repainted from reference [72]. Fig.a shows the all-season correlation skill of the three-month moving average Ni?o3.4 index as a function of the forecast lead month in the CNN model (red), SINTEX-F dynamical forecast system (blue), and dynamical forecast systems included in the North American Multi-Model Ensemble project (the other colors); Fig.b and Fig.c show the correlation skill of the Ni?o3.4 index targeted to each calendar month in the CNN model (b) and the SINTEX-F dynamical forecast system (c), hatching highlights the forecasts with correlation skill exceeding 0.5.)
图5 ANN预测风暴潮水位的验证 (图件改绘自文献[86]。图a~c分别为Masan站点2003年“Maemi”台风(a),Tongyoung站点2002年“Rusa”台风(b),Yeosu站点2012年“Bolaven”台风(c)风暴潮验证结果。MA是指文献中的Levenberg-Marquardt反向传播算法。)
Fig.5 Verification of ANN forecast storm surge level (Figure is repainted from reference [86]. Figures a-c show the storm surge verification results of 2003 Typhoon “Maemi” at Masan Station (a),2002 Typhoon “Rusa” at Tongyoung Station (b), and 2012 Typhoon “Bolaven” at Yeosu Station (c), respectively. MA is the Levenberg-Marquardt backpropagation algorithm in the reference.)
图6 ConvLSTM算法智能预测台风浪浪高 (图件改绘自文献[104]。图a~c为2019年8月8日18时,台风“Lekima”在东海上空时的有效波高(SWH);图d~f为2017年12月24日21时,台风“Tembin”在南海上空时的有效波高。)
Fig.6 ConvLSTM algorithm intelligently predicts typhoon wave height (Figure is repainted from reference [104]. Figures a-c show the SWH(significant wave height) of Typhoon “Lekima” over the East China Sea at 18:00 on August 8, 2019; figures d-f show the SWH of Typhoon “Tembin” over the South China Sea at 21:00 on December 24, 2017.)
图7 不同输入参数驱动的人工智能参数化方案与KPP参数化方案混合系数比较 (图件改绘自文献[144]。图a的驱动参数为温度、盐度和流速,图b的驱动参数为温度和盐度,图c的驱动参数为温度。图例中“corr”表示相关系数。)
Fig.7 Comparison of mixing coefficients between artificial intelligence parameterization schemes driven by different input parameters and KPP parameterization schemes (Figure is repainted from reference [144]. The driving parameters in figures a-c are temperature, salinity, flow rate (a), temperature and salinity (b),and temperature (c), respectively. In figure, ‘corr’ refers to the correlation coefficient.)
图8 PINN训练数据对应的圆柱体尾迹中的非对称旋涡脱落模式 (图件改绘自文献[161]。图a表示Re=100时不可压缩流和动态涡脱落经过圆柱体时的涡度,所述时空训练数据对应于所描述的圆柱体尾迹中的矩形区域。图b和c表示流向和横向速度分量u(t,x,y)和v(t,x,t)的训练数据点位置。)
Fig.8 Asymmetrical vortex shedding pattern in the cylinder wake to PINN training data (Figure is repainted from reference [161]. Figure a shows the incompressible flow and dynamic vortex shedding past a circular cylinder at Re=100. The spatio-temporal training data correspond to the depicted rectangular region in the cylinder wake. Figures b-c show the locations of training datapoints for the stream-wise and transverse velocity components, u(t, x, y) and v(t, x, t), respectively.)
图9 零样本超分辨率模拟: Navier-Stokes方程[170] (上:真实案例;下:神经算子预测案例,在64×64×20分辨率数据集上训练,在256×256×80分辨率上求值。)
Fig.9 Zero-shot super-resolution simulation: Navier-Stokes Equation[170] (Top: truth case; bottom: neural operator prediction case. Trained on 64×64×20 dataset, evaluated on 256×256×80.)
[1] | TANKARD C. Big data security[J]. Network Security, 2012(7): 5-8. |
[2] | MAYER-SCHÖNBERGER V, CUKIER K. Big data: a revo-lution that will transform how we live, work, and think[M]. Boston: Houghton Mifflin Harcourt, 2013. |
[3] | Ocean circulation is changing, and we need to know why[J]. Nature, 2018, 556(7700): 149. |
[4] | ANDO K, LIN X P, VILLANOY C, et al. Half-century of scientific advancements since the cooperative study of the Kuroshio and adjacent regions (CSK) programme—Need for a new Kuroshio research[J]. Progress in Oceanography, 2021, 193: 102513. |
[5] | 钱程程, 陈戈. 海洋大数据科学发展现状与展望[J]. 中国科学院院刊, 2018, 33(8):884-891. |
QIAN C C, CHEN G. Big data science for ocean: Present and future[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(8): 884-891. | |
[6] | SCHER S, MESSORI G. Weather and climate forecasting with neural networks: Using general circulation models (GCMs) with different complexity as a study ground[J]. Geoscientific Model Development, 2019, 12(7): 2797-2809. |
[7] | CHEN G, HUANG B X, CHEN X Y, et al. Deep blue AI: A new bridge from data to knowledge for the ocean science[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2022, 190: 103886. |
[8] | QIAN C C, HUANG B X, YANG X Q, et al. Data science for oceanography: From small data to big data[J]. Big Earth Data, 2022, 6(2): 236-250. |
[9] | 王辉, 刘娜, 逄仁波, 等. 全球海洋预报与科学大数据[J]. 科学通报, 2015, 60(S1):479-484. |
WANG H, LIU N, PANG R B, et al. Global ocean forecasting and scientific big data[J]. Chinese Science Bulletin, 2015, 60(S1): 479-484. | |
[10] | MARTIN S. An introduction to ocean remote sensing[M]. 2nd ed. Cambridge: Cambridge University Press, 2014. |
[11] | 戴洪磊, 牟乃夏, 王春玉, 等. 我国海洋浮标发展现状及趋势[J]. 气象水文海洋仪器, 2014, 31(2):118-121,125. |
DAI H L, MOU N X, WANG C Y, et al. Development status and trend of ocean buoy in China[J]. Meteorological, Hydrological and Marine Instruments, 2014, 31(2): 118-121, 125. | |
[12] | WULDER M A, COOPS N C. Satellites: Make earth obser-vations open access[J]. Nature, 2014, 513(7516): 30-31. |
[13] | 张蕾, 张国航, 毛凌野. 中国海洋卫星二十年[EB/OL].(2022-05-16)[2023-09-02]. http://finance.people.com.cn/n1/2022/0516/c1004-32422462.html. |
ZHANG L, ZHANG G H, MAO L Y. Twenty years of China’s ocean satellites [EB/OL]. (2022-05-16)[2023-09-02]. http://finance.people.com.cn/n1/2022/0516/c1004-32422462.html. | |
[14] | SONG T, PANG C, HOU B Y, et al. A review of artificial intelligence in marine science[J]. Frontiers in Earth Science, 2023, 11: 1090185. |
[15] | KRASNOPOLSKY V M. The application of neural networks in the earth system sciences[M]. [S.l.]: Springer, 2013. |
[16] | BOUKABARA S A, KRASNOPOLSKY V, STEWART J Q, et al. Leveraging modern artificial intelligence for remote sensing and NWP: Benefits and challenges[J]. Bulletin of the American Meteorological Society, 2019, 100(12): 473-491. |
[17] | BALL J E, ANDERSON D T, CHAN C S. Comprehensive survey of deep learning in remote sensing: Theories, tools, and challenges for the community[J]. Journal of Applied Remote Sensing, 2017, 11(4): 1. |
[18] | WANG H Y, LI X F. Deepblue: Advanced convolutional neural network applications for ocean remote sensing[J]. IEEE Geoscience and Remote Sensing Magazine, 2024, 12(1): 138-161. |
[19] | 宋振亚, 刘卫国, 刘鑫, 等. 海量数据驱动下的高分辨率海洋数值模式发展与展望[J]. 海洋科学进展, 2019, 37(2):161-170. |
SONG Z Y, LIU W G, LIU X, et al. Research progress and perspective of the key technologies for ocean numerical model driven by the mass data[J]. Advances in Marine Science, 2019, 37(2): 161-170. | |
[20] | 孙苗, 符昱, 吕憧憬, 等. 深度学习在海洋大数据挖掘中的应用[J]. 科技导报, 2018, 36(17):83-90. |
SUN M, FU Y, LÜ C J, et al. Deep learning application in marine big data mining[J]. Science & Technology Review, 2018, 36(17): 83-90. | |
[21] | PING B, SU F Z, MENG Y S. An improved DINEOF algorithm for filling missing values in spatio-temporal sea surface temperature data[J]. PLoS One, 2016, 11(5):e0155928. |
[22] | LIU X M, WANG M H. Gap filling of missing data for VIIRS global ocean color products using the DINEOF method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(8): 4464-4476. |
[23] | DUCOURNAU A, FABLET R. Deep learning for ocean remote sensing: An application of convolutional neural networks for super-resolution on satellite-derived SST data[C]//Proceedings of the 2016 9th IAPR Workshop on Pattern Recogniton in Remote Sensing (PRRS), December 4, 2016, Cancun, Mexico. |
[24] | PARK J, KIM J H, KIM H C, et al. Reconstruction of ocean color data using machine learning techniques in polar regions: Focusing on off Cape Hallett, Ross Sea[J]. Remote Sensing, 2019, 11(11): 1366. |
[25] | LI M, ZHANG R, LIU K F. Evolving a Bayesian network model with information flow for time series interpolation of multiple ocean variables[J]. Acta Oceanologica Sinica, 2021, 40(7): 249-262. |
[26] | RADIN C, NIEVES V. Machine-learning based recons-tructions of past regional sea level variability from proxy data[J]. Geophysical Research Letters, 2021, 48(23):e2021GL095382. |
[27] | TIAN T, CHENG L J, WANG G J, et al. Reconstructing ocean subsurface salinity at high resolution using a machine learning approach[J]. Earth System Science Data, 2022, 14(11): 5037-5060. |
[28] | CHEN Y H, LIU L, CHEN X E, et al. Data driven three-dimensional temperature and salinity anomaly reconstruction of the northwest Pacific Ocean[J]. Frontiers in Marine Science, 2023, 10: 1121334. |
[29] | CHELTON D B, SCHLAX M G, SAMELSON R M, et al. Global observations of large oceanic eddies[J]. Geophysical Research Letters, 2007, 34(15): L15606. |
[30] | DONG C M, MCWILLIAMS J C, LIU Y, et al. Global heat and salt transports by eddy movement[J]. Nature Commu-nications, 2014, 5: 3294. |
[31] |
MCGILLICUDDY D J Jr. Mechanisms of physical-biological-biogeochemical interaction at the oceanic mesoscale[J]. Annual Review of Marine Science, 2016, 8: 125-159.
DOI PMID |
[32] | BRANNIGAN L. Intense submesoscale upwelling in anti-cyclonic eddies[J]. Geophysical Research Letters, 2016, 43(7): 3360-3369. |
[33] | LGUENSAT R, SUN M, FABLET R, et al. EddyNet: A deep neural network for pixel-wise classification of oceanic eddies[C]//Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), July 22-27, 2018, Valencia, Spain. IEEE, 2018: 1764-1767. |
[34] | FRANZ K, ROSCHER R, MILIOTO A, et al. Ocean eddy identification and tracking using neural networks[C]//Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Symposium(IGARSS), July 22-27, 2018, Valencia, Spain. IEEE, 2018: 6887-6890. |
[35] | XU G J, CHENG C, YANG W X, et al. Oceanic eddy identification using an AI scheme[J]. Remote Sensing, 2019, 11(11): 1349. |
[36] | XU G J, XIE W H, DONG C M, et al. Application of three deep learning schemes into oceanic eddy detection[J]. Frontiers in Marine Science, 2021, 8: 672334. |
[37] | DUO Z J, WANG W K, WANG H Z. Oceanic mesoscale eddy detection method based on deep learning[J]. Remote Sensing, 2019, 11(16): 1921. |
[38] | CAO L J, ZHANG D J, ZHANG X F, et al. Detection and identification of mesoscale eddies in the South China Sea based on an artificial neural network model—YOLOF and remotely sensed data[J]. Remote Sensing, 2022, 14(21):5411. |
[39] | HANG R L, LI G, XUE M, et al. Identifying oceanic eddy with an edge-enhanced multiscale convolutional network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 9198-9207. |
[40] | LIU Y J, ZHENG Q A, LI X F. Characteristics of global ocean abnormal mesoscale eddies derived from the fusion of sea surface height and temperature data by deep learning[J]. Geophysical Research Letters, 2021, 48(17): e2021GL094772. |
[41] | ZHANG Y Y, LIU N, ZHANG Z Y, et al. Detection of Bering Sea slope mesoscale eddies derived from satellite altimetry data by an attention network[J]. Remote Sensing, 2022, 14(19): 4974. |
[42] | ZHAO N, HUANG B X, ZHANG X M, et al. Intelligent identification of oceanic eddies in remote sensing data via dual-pyramid UNet[J]. Atmospheric and Oceanic Science Letters, 2023, 16(4): 100335. |
[43] | ZHAO Y X, FAN Z L, LI H T, et al. Symmetric net: End-to-end mesoscale eddy detection with multi-modal data fusion[J]. Frontiers in Marine Science, 2023, 10: 1174818. |
[44] | KOCHKOV D, YUVAL J, LANGMORE I, et al. Neural general circulation models for weather and climate[Z/OL]. arXiv, 2023: 2311.07222. https://arxiv.org/abs/2311.07222v3. |
[45] | WANG C, LI X F. Deep learning in extracting tropical cyclone intensity and wind radius information from satellite infrared images—A review[J]. Atmospheric and Oceanic Science Letters, 2023, 16(4): 100373. |
[46] | SUN L N, ZHANG J, MENG J M. A study of the spatial-temporal distribution and propagation characteristics of internal waves in the Andaman Sea using MODIS[J]. Acta Oceanologica Sinica, 2019, 38(7): 121-128. |
[47] | LI X F, JACKSON C R, PICHEL W G. Internal solitary wave refraction at Dongsha atoll, South China Sea[J]. Geophysical Research Letters, 2013, 40(12): 3128-3132. |
[48] | BAI X L, LI X F, LAMB K G, et al. Internal solitary wave reflection near Dongsha atoll, the South China Sea[J]. Journal of Geophysical Research: Oceans, 2017, 122(10): 7978-7991. |
[49] | ZHANG X D, LI X F, ZHANG T. Characteristics and generations of internal wave in the Sulu Sea inferred from optical satellite images[J]. Journal of Oceanology and Limnology, 2020, 38(5): 1435-1444. |
[50] | ZHENG Q A, YUAN Y L, KLEMAS V, et al. Theoretical expression for an ocean internal soliton synthetic aperture radar image and determination of the soliton characteristic half width[J]. Journal of Geophysical Research: Oceans, 2001, 106(C12): 31415-31423. |
[51] | PAN X Y, WANG J, ZHANG X D, et al. A deep-learning model for the amplitude inversion of internal waves based on optical remote-sensing images[J]. International Journal of Remote Sensing, 2018, 39(3): 607-618. |
[52] |
LI X F, LIU B, ZHENG G, et al. Deep-learning-based information mining from ocean remote-sensing imagery[J]. National Science Review, 2020, 7(10): 1584-1605.
DOI PMID |
[53] | WANG S F, TENG Y J, PERDIKARIS P. Understanding and mitigating gradient flow pathologies in physics-informed neural networks[J]. SIAM Journal on Scientific Computing, 2021, 43(5): 3055-3081. |
[54] | VASAVI S, DIVYA C, SARMA A S. Detection of solitary ocean internal waves from SAR images by using UNet and KDV solver technique[J]. Global Transitions Proceedings, 2021, 2(2): 145-151. |
[55] | ZHANG X D, WANG H Y, WANG S, et al. Oceanic internal wave amplitude retrieval from satellite images based on a data-driven transfer learning model[J]. Remote Sensing of Environment, 2022, 272: 112940. |
[56] | ZAKHVATKINA N, SMIRNOV V, BYCHKOVA I. Satellite SAR data-based sea ice classification: An overview[J]. Geosciences, 2019, 9(4): 152. |
[57] | XU Y, SCOTT K A. Sea ice and open water classification of SAR imagery using CNN-based transfer learning[C]//Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), July 23-28, 2017, Fort Worth, TX, USA. IEEE, 2017: 3262-3265. |
[58] | LI J X, WANG C, WANG S G, et al. Gaofen-3 sea ice detection based on deep learning[C]//Proceedings of the 2017 Progress in Electromagnetics Research Symposium-Fall (PIERS-FALL), November 19-22, 2017, Singapore. IEEE, 2017: 933-939. |
[59] | GAO Y H, GAO F, DONG J Y, et al. Transferred deep learning for sea ice change detection from synthetic-aperture radar images[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(10): 1655-1659. |
[60] | BOULZE H, KOROSOV A, BRAJARD J. Classification of sea ice types in Sentinel-1 SAR data using convolutional neural networks[J]. Remote Sensing, 2020, 12(13): 2165. |
[61] | REN Y B, LI X F, YANG X F, et al. Development of a dual-attention UNet model for sea ice and open water classification on SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4010205. |
[62] | GONÇALVES BENTO C, LYNCH HEATHER J. Fine-scale sea ice segmentation for high-resolution satellite imagery with weakly-supervised CNNs[J]. Remote Sensing, 2021, 13(18): 3562. |
[63] | ZHANG J D, ZHANG W Y, HU Y X, et al. An improved sea ice classification algorithm with Gaofen-3 dual-polarization SAR data based on deep convolutional neural networks[J]. Remote Sensing, 2022, 14(4): 906. |
[64] | LINS I D, ARAUJO M, MOURA M D C, et al. Prediction of sea surface temperature in the tropical Atlantic by support vector machines[J]. Computational Statistics & Data Analysis, 2013, 61: 187-198. |
[65] | PATIL K, DEO M C. Basin-scale prediction of sea surface temperature with artificial neural networks[J]. Journal of Atmospheric and Oceanic Technology, 2018, 35(7): 1441-1455. |
[66] | WEI L, GUAN L, QU L Q, et al. Prediction of sea surface temperature in the South China Sea by artificial neural networks[C]//Proceedings of the 2019 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), July 28-August 2, 2019, Yokohama, Japan. IEEE, 2019: 8158-8161. |
[67] | PETERSIK P J, DIJKSTRA H A. Probabilistic forecasting of El Niño using neural network models[J]. Geophysical Research Letters, 2020, 47(6): e2019GL086423. |
[68] | 朱贵重, 胡松. 基于LSTM-RNN的海水表面温度模型研究[J]. 应用海洋学学报, 2019, 38(2):191-197. |
ZHU G C, HU S. Study on sea surface temperature model based on LSTM-RNN[J]. Journal of Applied Oceanography, 2019, 38(2): 191-197. | |
[69] | ZHANG Z, PAN X L, JIANG T, et al. Monthly and quarterly sea surface temperature prediction based on gated recurrent unit neural network[J]. Journal of Marine Science and Engineering, 2020, 8(4): 249. |
[70] | XIAO C J, CHEN N C, HU C L, et al. A spatiotemporal deep learning model for sea surface temperature field prediction using time-series satellite data[J]. Environ-mental Modelling & Software, 2019, 120: 104502. |
[71] | MAHESH A, EVANS M, JAIN G, et al. Forecasting El Niño with convolutional and recurrent neural networks[C]//Neurips 2019 Workshop-Tackling Climate Change with Machine Learning, Vancouver, 2019. |
[72] | HAM Y G, KIM J H, LUO J J. Deep learning for multi-year ENSO forecasts[J]. Nature, 2019, 573(7775): 568-572. |
[73] | XIAO C J, CHEN N C, HU C L, et al. Short and mid-term sea surface temperature prediction using time-series satellite data and LSTM-AdaBoost combination approach[J]. Remote Sensing of Environment, 2019, 233: 111358. |
[74] | GUPTA M, KODAMANA H, SANDEEP S. Prediction of ENSO beyond spring predictability barrier using deep convolutional LSTM networks[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1501205. |
[75] | CACHAY S R, ERICKSON E, BUCKER A, et al. Graph neural networks for improved El Niño forecasting[Z/OL]. arXiv, 2021: 2012. 01598. https://arxiv.org/abs/2012.01598. |
[76] | ZHOU L, ZHANG R H. A hybrid neural network model for ENSO prediction in combination with principal oscillation pattern analyses[J]. Advances in Atmospheric Sciences, 2022, 39(6): 889-902. |
[77] | LIANG X S, XU F, RONG Y N, et al. El Niño Modoki can be mostly predicted more than 10 years ahead of time[J]. Scientific Reports, 2021, 11(1): 17860. |
[78] | GLAHN B, TAYLOR A, KURKOWSKI N, et al. The role of the SLOSH model in National Weather Service storm surge forecasting[J]. National Weather Digest, 2009, 33: 3-14. |
[79] | LEE T L. Neural network prediction of a storm surge[J]. Ocean Engineering, 2006, 33(3/4): 483-494. |
[80] | LEE T L. Back-propagation neural network for the prediction of the short-term storm surge in Taichung harbor, Taiwan[J]. Engineering Applications of Artificial Intelligence, 2008, 21(1): 63-72. |
[81] | JIANG S Q, LIU Q. The BP neural network optimized by Beetle Antenna Search Algorithm for storm surge prediction[C]//The 30th International Ocean and Polar Engineering Conference, 2020: ISOPE-I-20-3286. |
[82] | CHAO W T, YOUNG C C, HSU T W, et al. Long-lead-time prediction of storm surge using artificial neural networks and effective typhoon parameters: Revisit and deeper insight[J]. Water, 2020, 12(9): 2394. |
[83] | KIM S Y, MATSUMI Y, SHIOZAKI S, et al. A study of a real-time storm surge forecast system using a neural network at the Sanin Coast, Japan[C]//Proceedings of the 2012 Oceans, October 14-19, 2012, Hampton Roads, VA, USA. IEEE, 2012: 1-7. |
[84] | KIM S W, MELBY J A, NADAL-CARABALLO N C, et al. A time-dependent surrogate model for storm surge prediction based on an artificial neural network using high-fidelity synthetic hurricane modeling[J]. Natural Hazards, 2015, 76(1): 565-585. |
[85] | KIM S, MATSUMI Y, PAN S Q, et al. A real-time forecast model using artificial neural network for after-runner storm surges on the Tottori coast, Japan[J]. Ocean Engineering, 2016, 122: 44-53. |
[86] | KIM S W, LEE A, MUN J. A surrogate modeling for storm surge prediction using an artificial neural network[J]. Journal of Coastal Research, 2018, 85: 866-870. |
[87] | KIM S, PAN S Q, MASE H. Artificial neural network-based storm surge forecast model: Practical application to Sakai Minato, Japan[J]. Applied Ocean Research, 2019, 91: 101871. |
[88] | RAJASEKARAN S, GAYATHRI S, LEE T L. Support vector regression methodology for storm surge predictions[J]. Ocean Engineering, 2008, 35(16): 1578-1587. |
[89] | YOU S H, SEO J W. Storm surge prediction using an artificial neural network model and cluster analysis[J]. Natural Hazards, 2009, 51(1): 97-114. |
[90] | RUMELHART D E, HINTON G E, WILLIAMS R J. Lear-ning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533-536. |
[91] |
SCHMIDHUBER J. Deep learning in neural networks: An overview[J]. Neural Networks, 2015, 61: 85-117.
PMID |
[92] | 雷森, 史振威, 石天阳, 等. 基于递归神经网络的风暴潮增水预测[J]. 智能系统学报, 2017, 12(5):640-644. |
LEI S, SHI Z W, SHI T Y, et al. Prediction of storm surge based on recurrent neural network[J]. CAAI Transactions on Intelligent Systems, 2017, 12(5): 640-644. | |
[93] | 刘媛媛, 张丽, 李磊, 等. 基于多变量LSTM神经网络模型的风暴潮临近预报[J]. 海洋通报, 2020, 39(6):689-694. |
LIU Y Y, ZHANG L, LI L, et al. Storm surge nowcasting based on multivariable LSTM neural network model[J]. Marine Science Bulletin, 2020, 39(6): 689-694. | |
[94] | XIE W H, XU G J, ZHANG H C, et al. Developing a deep learning-based storm surge forecasting model[J]. Ocean Modelling, 2023, 182: 102179. |
[95] | 谢文鸿, 徐广珺, 董昌明. 基于ConvLSTM机器学习的风暴潮漫滩预报研究[J]. 大气科学学报, 2022, 45(5):674-687. |
XIE W H, XU G J, DONG C M. Research on storm surge floodplain prediction based on ConvLSTM machine learning[J]. Transactions of Atmospheric Sciences, 2022, 45(5): 674-687. | |
[96] | DEO M C, SRIDHAR NAIDU C. Real time wave forecasting using neural networks[J]. Ocean Engineering, 1998, 26(3): 191-203. |
[97] | LONDHE S N, PANCHANG V. One-day wave forecasts based on artificial neural networks[J]. Journal of Atmospheric and Oceanic Technology, 2006, 23(11): 1593-1603. |
[98] | KALOOP M R, KUMAR D, ZARZOURA F, et al. A wavelet-Particle swarm optimization-Extreme learning machine hybrid modeling for significant wave height prediction[J]. Ocean Engineering, 2020, 213: 107777. |
[99] | MANDAL S, PRABAHARAN N. Ocean wave forecasting using recurrent neural networks[J]. Ocean Engineering, 2006, 33(10): 1401-1410. |
[100] | GAO S, HUANG J, LI Y R, et al. A forecasting model for wave heights based on a long short-term memory neural network[J]. Acta Oceanologica Sinica, 2021, 40(1): 62-69. |
[101] | LU P, LIANG S, ZOU G, et al. M-LSTM, A hybrid pre-diction model for wave heights[J]. Journal of Nonlinear and Convex Analysis, 2019, 20(5): 775-786. |
[102] | ZHOU S Y, BETHEL B J, SUN W J, et al. Improving significant wave height forecasts using a joint empirical mode decomposition-long short-term memory network[J]. Journal of Marine Science and Engineering, 2021, 9(7): 744. |
[103] | FAN S T, XIAO N H, DONG S. A novel model to predict significant wave height based on long short-term memory network[J]. Ocean Engineering, 2020, 205: 107298. |
[104] | ZHOU S Y, XIE W H, LU Y X, et al. ConvLSTM-based wave forecasts in the south and east China Seas[J]. Frontiers in Marine Science, 2021, 8: 680079. |
[105] | BAI G, WANG Z F, ZHU X Y, et al. Development of a 2-D deep learning regional wave field forecast model based on convolutional neural network and the application in South China Sea[J]. Applied Ocean Research, 2022, 118: 103012. |
[106] | 张峰, 王琪, 卢美, 等. 基于人工神经网络的海流预报研究[J]. 海洋预报, 2018, 35(4):41-46. |
ZHANG F, WANG Q, LU M, et al. Study of tidal current prediction based on artificial neural network[J]. Marine Forecasts, 2018, 35(4): 41-46. | |
[107] | XIN L, HU S, WANG F, et al. Using a deep-learning approach to infer and forecast the Indonesian throughflow transport from sea surface height[J]. Frontiers in Marine Science, 2023, 10: 1079286. |
[108] | PARK S, BYUN J, SHIN K S, et al. Ocean current pre-diction based on machine learning for deciding handover priority in underwater wireless sensor networks[C]//Proceedings of the 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), February 19-21, 2020, Fukuoka, Japan. IEEE, 2020: 505-509. |
[109] | XIONG W, XIANG Y F, WU H, et al. AI-GOMS: Large AI-driven global ocean modeling system[Z/OL]. arXiv, 2023: 2308.03152. https://arxiv.org/abs/2308.03152v2. |
[110] | MELLOR G L, YAMADA T. Development of a turbulence closure model for geophysical fluid problems[J]. Reviews of Geophysics, 1982, 20(4): 851-875. |
[111] | PACANOWSKI R C, PHILANDER S G H. Parameterization of vertical mixing in numerical models of tropical oceans[J]. Journal of Physical Oceanography, 1981, 11(11): 1443-1451. |
[112] | LARGE W G, MCWILLIAMS J C, DONEY S C. Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization[J]. Reviews of Geophy-sics, 1994, 32(4): 363-403. |
[113] | CHEN D K, ROTHSTEIN L M, BUSALACCHI A J. A hybrid vertical mixing scheme and its application to tropical ocean models[J]. Journal of Physical Oceanography, 1994, 24(10): 2156-2179. |
[114] | FOX-KEMPER B, FERRARI R, HALLBERG R. Para-meterization of mixed layer eddies. Part I: Theory and diagnosis[J]. Journal of Physical Oceanography, 2008, 38(6): 1145-1165. |
[115] | SMAGORINSKY J. General circulation experiments with the primitive equations[J]. Monthly Weather Review, 1963, 91(3): 99-164. |
[116] | GENT P R, MCWILLIAMS J C. Isopycnal mixing in ocean circulation models[J]. Journal of Physical Oceanography, 1990, 20(1): 150-155. |
[117] | FOX-KEMPER B, BACHMAN S, PEARSON B, et al. Principles and advances in subgrid modeling for eddy-rich simulations[J]. CLIVAR Exchanges, 2014, 19(65): 42-46. |
[118] |
DANABASOGLU G, MCWILLIAMS J C, GENT P R. The role of mesoscale tracer transports in the global ocean circulation[J]. Science, 1994, 264(5162): 1123-1126.
PMID |
[119] | BERLOFF P S. Random-forcing model of the mesoscale oceanic eddies[J]. Journal of Fluid Mechanics, 2005, 529: 71-95. |
[120] | PORTA MANA P, ZANNA L. Toward a stochastic parame-terization of ocean mesoscale eddies[J]. Ocean Modelling, 2014, 79: 1-20. |
[121] | ZANNA L, PORTA MANA P, ANSTEY J, et al. Scale-aware deterministic and stochastic parametrizations of eddy-mean flow interaction[J]. Ocean Modelling, 2017, 111: 66-80. |
[122] | DURAISAMY K, IACCARINO G, XIAO H. Turbulence modeling in the age of data[J]. Annual Review of Fluid Mechanics, 2019, 51: 357-377. |
[123] |
张涛, 谢丰, 薛巍, 等. 格点大气环流模式GAMIL2参数不确定性的量化分析与优化[J]. 地球物理学报, 2016, 59(2):465-475.
DOI |
ZHANG T, XIE F, XUE W, et al. Quantification and optimization of parameter uncertainty in the grid-point atmospheric model GAMIL2[J]. Chinese Journal of Geo-physics, 2016, 59(2): 465-475. | |
[124] | JIANG G Q, XU J, WEI J. A deep learning algorithm of neural network for the parameterization of typhoon-ocean feedback in typhoon forecast models[J]. Geophysical Research Letters, 2018, 45(8): 3706-3716. |
[125] | BOLTON T, ZANNA L. Applications of deep learning to ocean data inference and subgrid parameterization[J]. Journal of Advances in Modeling Earth Systems, 2019, 11(1): 376-399. |
[126] | GREATBATCH R J, ZHAI X M, KOHLMANN J D, et al. Ocean eddy momentum fluxes at the latitudes of the Gulf Stream and the Kuroshio extensions as revealed by satellite data[J]. Ocean Dynamics, 2010, 60(3): 617-628. |
[127] | GREATBATCH R J, ZHAI X, CLAUS M, et al. Transport driven by eddy momentum fluxes in the Gulf Stream extension region[J]. Geophysical Research Letters, 2010, 37: L24401. |
[128] | KANG D J, CURCHITSER E N. Energetics of eddy-mean flow interactions in the Gulf Stream region[J]. Journal of Physical Oceanography, 2015, 45(4): 1103-1120. |
[129] | WATERMAN S, JAYNE S. Eddy-mean flow interactions in the along-stream development of a western boundary current jet: An idealized model study[J]. Journal of Physical Oceanography, 2011, 41(4): 682-707. |
[130] | WATERMAN S, HOGG N, JAYNE S. Eddy-mean flow interaction in the Kuroshio extension region[J]. Journal of Physical Oceanography, 2011, 41(6): 1182-1194, 1197. |
[131] | GOODFELLOW I, BENGIO Y, COURVILLE A. Deep Learning[M]. [S.l.]: MIT Press, 2016. |
[132] | TRACEY B D, DURAISAMY K, ALONSO J J. A machine learning strategy to assist turbulence model development[C]//Proceedings of the 53rd AIAA Aerospace Sciences Meeting. Kissimmee, Florida. Reston, Virginia: AIAA, 2015: AIAA 2015-1287. |
[133] | LING J L, KURZAWSKI A, TEMPLETON J. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance[J]. Journal of Fluid Mechanics, 2016, 807: 155-166. |
[134] | LING J L, JONES R, TEMPLETON J. Machine learning strategies for systems with invariance properties[J]. Journal of Computational Physics, 2016, 318: 22-35. |
[135] | MAULIK R, SAN O. A neural network approach for the blind deconvolution of turbulent flows[J]. Journal of Fluid Mechanics, 2017, 831: 151-181. |
[136] | SAN O, MAULIK R. Extreme learning machine for reduced order modeling of turbulent geophysical flows[J]. Physical Review E, 2018, 97: 042322. |
[137] |
MAULIK R, SAN O, RASHEED A, et al. Subgrid modelling for two-dimensional turbulence using neural networks[J]. Journal of Fluid Mechanics, 2019, 858: 122-144.
DOI |
[138] | CRUZ M A, THOMPSON R L, SAMPAIO L E B, et al. The use of the Reynolds force vector in a physics informed machine learning approach for predictive turbulence modeling[J]. Computers & Fluids, 2019, 192: 104258. |
[139] | ZHOU Z D, HE G W, WANG S Z, et al. Subgrid-scale model for large-eddy simulation of isotropic turbulent flows using an artificial neural network[J]. Computers & Fluids, 2019, 195: 104319. |
[140] | LEITH C E. Diffusion approximation for two-dimensional turbulence[J]. The Physics of Fluids, 1968, 11(3): 671-672. |
[141] | ZANNA L, BOLTON T. Data-driven equation discovery of ocean mesoscale closures[J]. Geophysical Research Letters, 2020, 47(17): e2020GL088376. |
[142] | SALEHIPOUR H, PELTIER W R. Deep learning of mixing by two ‘atoms’ of stratified turbulence[J]. Journal of Fluid Mechanics, 2019, 861: R4. |
[143] | ZHU Y C, ZHANG R H, MOUM J N, et al. Physics-informed deep-learning parameterization of ocean vertical mixing improves climate simulations[J]. National Science Review, 2022, 9(8): nwac044. |
[144] | HAN G Q, CEN H B, JIANG J H, et al. Applying machine learning in devising a parsimonious ocean mixing parameterization scheme[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2022, 203: 105163. |
[145] | LALOYAUX P, BONAVITA M, CHRUST M, et al. Exploring the potential and limitations of weak-constraint 4D-Var[J]. Quarterly Journal of the Royal Meteorological Society, 2020, 146(733): 4067-4082. |
[146] | SCHUHEN N, THORARINSDOTTIR T L, GNEITING T. Ensemble model output statistics for wind vectors[J]. Monthly Weather Review, 2012, 140(10): 3204-3219. |
[147] | BARAN Á, LERCH S, EL AYARI M, et al. Machine learning for total cloud cover prediction[J]. Neural Com-puting and Applications, 2021, 33(7): 2605-2620. |
[148] | GRÖNQUIST P, YAO C Y, BEN-NUN T, et al. Deep learning for post-processing ensemble weather forecasts[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 379(2194): 20200092. |
[149] | RASP S, LERCH S. Neural networks for postprocessing ensemble weather forecasts[J]. Monthly Weather Review, 2018, 146(11): 3885-3900. |
[150] | LEINONEN J, NERINI D, BERNE A. Stochastic super-resolution for downscaling time-evolving atmospheric fields with a generative adversarial network[J]. IEEE Transac-tions on Geoscience and Remote Sensing, 2021, 59(9): 7211-7223. |
[151] | MAKARYNSKYY O. Improving wave predictions with artificial neural networks[J]. Ocean Engineering, 2004, 31(5/6): 709-724. |
[152] | DESHMUKH A N, DEO M C, BHASKARAN P K, et al. Neural-network-based data assimilation to improve nume-rical ocean wave forecast[J]. IEEE Journal of Oceanic Engineering, 2016, 41(4): 944-953. |
[153] | SUN D Y, HUANG W Y, LUO Y, et al. A deep learning-based bias correction method for predicting ocean surface waves in the northwest Pacific Ocean[J]. Geophysical Research Letters, 2022, 49(23): e2022GL100916. |
[154] | GRACIA S, OLIVITO J, RESANO J, et al. Improving accuracy on wave height estimation through machine learning techniques[J]. Ocean Engineering, 2021, 236: 108699. |
[155] | 吕忻, 丁骏. 基于深度学习的潮位预报订正技术研究[J]. 海洋预报, 2022, 39(2):70-79. |
LÜ X, DING J. Study on the correction technology of tide level forecast based on deep learning[J]. Marine Forecasts, 2022, 39(2): 70-79. | |
[156] | TEDESCO P, RABAULT J, SAETRA M L, et al. Bias correction of operational storm surge forecasts using neural networks[Z/OL]. arXiv, 2023: 2301.00862. https://arxiv.org/abs/2301.00892v1. |
[157] | MAO K, GAO F, ZHANG S Q, et al. An initial field intelligent correcting algorithm for numerical forecasting based on artificial neural networks under the conditions of limited observations: Part I—Focusing on ocean tempera-ture[J]. Journal of Marine Science and Engineering, 2022, 10(3): 311. |
[158] | WOLFF T D, CARRILLO H, LUIS M, et al. Assessing physics informed neural networks in ocean modelling and climate change applications[C]// Modeling Oceans and Climate Change Workshop at ICLR 2021, May 2021, Santiago (Virtual), Chile, 2021. HAL Id:hal-03262684. |
[159] | RUDY S H, BRUNTON S L, PROCTOR J L, et al. Data-driven discovery of partial differential equations[J]. Science Advances, 2017, 3(4): e1602614. |
[160] | RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics informed deep learning (Part I): Data-driven solutions of nonlinear partial differential equations[Z/OL]. arXiv, 2017: 1711.10561. https://arxiv.org/abs/1711.10561v1. |
[161] | RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707. |
[162] | BLECHSCHMIDT J, ERNST O G. Three ways to solve partial differential equations with neural networks—A review[J]. GAMM-Mitteilungen, 2021, 44(2): e202100006. |
[163] | SCHNEIDER T, LAN S W, STUART A, et al. Earth system modeling 2.0: A blueprint for models that learn from observations and targeted high-resolution simulations[J]. Geophysical Research Letters, 2017, 44(24): 12396-12417. |
[164] | ZANNA L, BRANKART J M, HUBER M, et al. Uncer-tainty and scale interactions in ocean ensembles: From seasonal forecasts to multidecadal climate predictions[J]. Quarterly Journal of the Royal Meteorological Society, 2019, 145(S1): 160-175. |
[165] | BEUCLER T, PRITCHARD M, RASP S, et al. Enforcing analytic constraints in neural networks emulating physical systems[J]. Physical Review Letters, 2021, 126(9):098302. |
[166] | GUILLOT J, KOENIG G, MINBASHIAN K, et al. Partial differential equations for oceanic artificial intelligence[J]. ESAIM: Proceedings and Surveys, 2021, 70: 137-146. |
[167] | KARNIADAKIS G E, KEVREKIDIS I G, LU L, et al. Physics-informed machine learning[J]. Nature Reviews Physics, 2021, 3(6): 422-440. |
[168] | LU L, JIN P, KARNIADAKIS G. DeepONet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators[Z/OL]. arXiv, 2019: 1910. 03193. https://arxiv.org/abs/1910.03193v1. |
[169] | BHATTACHARYA K, HOSSEINI B, KOVACHKI N B, et al. Model reduction and neural networks for parametric PDEs[J]. The SMAI Journal of Computational Mathematics, 2021, 7: 121-157. |
[170] | LI Z Y, KOVACHKI N, AZIZZADENESHELI K, et al. Fourier neural operator for parametric partial differential equations[Z/OL]. arXiv, 2020: 2010. 08895. https://arxiv.org/abs/2010.08895v1. |
[171] | GRIEVES M, VICKERS J. Digital twin: Mitigating unpre-dictable, undesirable emergent behavior in complex systems[M]//KAHLEN F J, FLUMERFELT S, ALVES A. Transdisciplinary perspectives on complex systems: New findings and approaches. [S.l.]: Springer, 2017: 85-113. |
[172] | IBRAHIM M, RASSÕLKIN A, VAIMANN T, et al. Overview on digital twin for autonomous electrical vehicles propulsion drive system[J]. Sustainability, 2022, 14(2):601. |
[173] | BAUER P, STEVENS B, HAZELEGER W. A digital twin of earth for the green transition[J]. Nature Climate Change, 2021, 11(2): 80-83. |
[174] | VOOSEN P. Europe builds ‘digital twin’ of Earth to hone climate forecasts[J]. Science, 2020, 370(6512): 16-17. |
[175] | JIANG P, MEINERT N, JORDÃO H, et al. Digital twin earth-coasts: Developing a fast and physics-informed surro-gate model for coastal floods via neural operators[Z/OL]. arXiv, 2021: 2110. 07100. https://arxiv.org/abs/2110.07100v1. |
[176] | PATHAK J, SUBRAMANIAN S, HARRINGTON P, et al. FourCastNet: A global data-driven high-resolution weather model using adaptive Fourier neural operators[Z/OL]. arXiv, 2022: 2202. 11214. https://arxiv.org/abs/2202.11214v1. |
[177] | SONG Z, DUAN Y, JIN W, et al. Omniverse-OpenDS: Enabling agile developments for complex driving scenarios via reconfigurable abstractions[M]// KRÖMKER H. HCI in mobility, transport, and automotive systems. [S.l.]: Springer, 2022: 72-87. https://doi.org/10.1007/978-3-031-04987-3_5. |
[178] | 刘昌军, 吕娟, 任明磊, 等. 数字孪生淮河流域智慧防洪体系研究与实践[J]. 中国防汛抗旱, 2022, 32(1):47-53. |
LIU C J, LÜ J, REN M L, et al. Research and application of digital twin intelligent flood prevention system in Huaihe River Basin[J]. China Flood & Drought Management, 2022, 32(1): 47-53. | |
[179] | 甘郝新, 吴皓楠. 数字孪生珠江流域建设初探[J]. 中国防汛抗旱, 2022, 32(2):36-39. |
GAN H X, WU H N. Study on the construction of the digital twin Pearl River Basin[J]. China Flood & Drought Management, 2022, 32(2): 36-39. | |
[180] |
刘红彬, 申志强, 王轶泽, 等. 数字孪生模型在轴承套圈磨削加工中的应用[J]. 系统仿真学报, 2023, 35(3):557-567.
DOI |
LIU H B, SHEN Z Q, WANG Y Z, et al. Application of digital twin model in grinding of bearing rings[J]. Journal of System Simulation, 2023, 35(3): 557-567.
DOI |
|
[181] |
朱庆, 张利国, 丁雨淋, 等. 从实景三维建模到数字孪生建模[J]. 测绘学报, 2022, 51(6):1040-1049.
DOI |
ZHU Q, ZHANG L G, DING Y L, et al. From real 3D modeling to digital twin modeling[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 1040-1049.
DOI |
|
[182] | 李猛, 聂铭, 和敬涵, 等. 基于数字孪生的柔性直流电网纵联保护原理[J]. 中国电机工程学报, 2022, 42(5):1773-1783. |
LI M, NIE M, HE J H, et al. Pilot protection of flexible DC grid based on digital twin[J]. Proceedings of the CSEE, 2022, 42(5): 1773-1783. | |
[183] | 黄艳, 喻杉, 罗斌, 等. 面向流域水工程防灾联合智能调度的数字孪生长江探索[J]. 水利学报, 2022, 53(3):253-269. |
HUANG Y, YU S, LUO B, et al. Development of the digital twin Changjiang River with the pilot system of joint and intelligent regulation of water projects for flood mana-gement[J]. Journal of Hydraulic Engineering, 2022, 53(3): 253-269. | |
[184] | 杨传书. 数字孪生技术在钻井领域的应用探索[J]. 石油钻探技术, 2022, 50(3):10-16. |
YANG C S. Exploration for the application of digital twin technology in drilling engineering[J]. Petroleum Drilling Techniques, 2022, 50(3): 10-16. | |
[185] |
王胜任, 郭岩, 乔兴华, 等. 基于数字孪生的飞机装配工艺技术研究[J]. 组合机床与自动化加工技术, 2021(8):131-134.
DOI |
WANG S R, GUO Y, QIAO X H, et al. Research on assembly process technology based on digital twin[J]. Modular Machine Tool & Automatic Manufacturing Tech-nique, 2021(8): 131-134. | |
[186] | 赵笑寒, 阳连丰, 罗超. 数字孪生模型在海上平台的应用[J]. 化学工程与装备, 2022(5):103-104. |
ZHAO X H, YANG L F, LUO C. Application of digital twin model in offshore platform[J]. Chemical Engineering & Equipment, 2022(5): 103-104. | |
[187] | 蒋冰, 姜晓轶, 吕憧憬, 等. 中国“数字海洋”工程进展研究[J]. 科技导报, 2018, 36(14):75-79. |
JIANG B, JIANG X Y, LÜ C J, et al. The research on digital ocean engineering of China[J]. Science & Technology Review, 2018, 36(14): 75-79. | |
[188] | BARBIE A, PECH N, HASSELBRING W, et al. Develo-ping an underwater network of ocean observation systems with digital twin prototypes—A field report from the Baltic Sea[J]. IEEE Internet Computing, 2022, 26(3): 33-42. |
[189] | HESTNESS J, NARANG S, ARDALANI N, et al. Deep learning scaling is predictable, empirically[Z/OL]. arXiv, 2017: 1712.00409. https://arxiv.org/abs/1712.00409. |
[190] | ROSENFELD J S, ROSENFELD A, BELINKOV Y, et al. A constructive prediction of the generalization error across scales[Z/OL]. arXiv, 2019: 1909. 12673. https://arxiv.org/abs/1909.12673v1. |
[191] | KAPLAN J, MCCANDLISH S, HENIGHAN T, et al. Scaling laws for neural language models[Z/OL]. arXiv, 2020: 2001. 08361. https://arxiv.org/abs/2001.08361v1. |
[192] | JONES A L. Scaling scaling laws with board games[Z/OL]. arXiv, 2021: 2104. 03113. https://arxiv.org/abs/2104.03113v1. |
[193] | SEVILLA J, HEIM L, HO A, et al. Compute trends across three eras of machine learning[C]//Proceedings of the 2022 International Joint Conference on Neural Networks (IJCNN), July 18-23, 2022, Padua, Italy. IEEE, 2022: 1-8. |
[194] | YUAN S, ZHAO H, ZHAO S, et al. A roadmap for big model[Z/OL]. arXiv, 2022: 2203. 14101. https://arxiv.org/abs/2203.14101v3. |
[195] | BROWN T, MANN B, RYDER N, et al. Language models are few-shot learners[Z/OL]. arXiv, 2020: 2005. 14165. https://arxiv.org/abs/2005.14165v4. |
[196] | 黄哲. 应用AI大模型[N]. 中国计算机报, 2023-07-17 (10). |
HUANG Z. Application of AI large model[N]. China Computer News, 2023-07-17 (10). | |
[197] | BI K F, XIE L X, ZHANG H H, et al. Accurate medium-range global weather forecasting with 3D neural networks[J]. Nature, 2023, 619(7970): 533-538. |
[198] | CHEN K, HAN T, GONG J C, et al. FengWu: Pushing the skillful global medium-range weather forecast beyond 10 days lead[Z/OL]. arXiv, 2023: 2304.02948. https://arxiv.org/abs/2304.02948. |
[199] | LAM R, SANCHEZ-GONZALEZ A, WILLSON M, et al. GraphCast: Learning skillful medium-range global weather forecasting[Z/OL]. arXiv, 2023: 2212. 12794. https://arxiv.org/abs/2212.12794v2. |
[200] | NGUYEN T, BRANDSTETTER J, KAPOOR A, et al. ClimaX: A foundation model for weather and climate[Z/OL]. arXiv, 2023: 2301.10343. https://arxiv.org/abs/2301.10343v5. |
[201] | ZHANG Y C, LONG M S, CHEN K Y, et al. Skilful nowcasting of extreme precipitation with NowcastNet[J]. Nature, 2023, 619(7970): 526-532. |
[202] | 范昕茹. 气象大模型, 让极端天气不再无解[N]. IT时报,2023-07-28(3). |
FAN X R. Big weather model, let extreme weather no longer have no solution[N]. IT Times, 2023-07-28(3). |
[1] | 邵志远, 赵杰臣, 解龙翔, 牟芳如, 肖静, 刘敏君, 陈雪婧. 基于深度学习和Sentinel-1卫星影像的北极海冰分类精度和影响因素[J]. 海洋学研究, 2024, 42(3): 119-130. |
[2] | 陆钰婷, 郭文康, 丁骏, 王林峰, 李晓辉, 王久珂. 人工智能海浪预报的发展与挑战[J]. 海洋学研究, 2024, 42(3): 28-37. |
[3] | 徐广珺, 施宇诚, 余洋, 谢华荣, 谢文鸿, 刘婧媛, 林夏艳, 刘宇, 董昌明. 海洋涡旋智能检测研究进展[J]. 海洋学研究, 2024, 42(3): 38-50. |
[4] | 邸雅楠, 赵若轩, 徐建洲. 基于深度学习的生物组织病理图像分析在海洋监测中的发展潜力及案例分析[J]. 海洋学研究, 2024, 42(3): 64-74. |
[5] | 金阳, 韩磊, 金梅兵, 董昌明. 基于ConvLSTM的中国东南沿海波浪智能预报和评估[J]. 海洋学研究, 2024, 42(3): 88-98. |
[6] | 张宗峰, 陈同彦, 周家兴, 赵徐, 唐超, 聂元训, 刘锦昆, 吴必胜. 海洋导管架平台弃置方案与技术方法研究进展[J]. 海洋学研究, 2024, 42(2): 113-124. |
[7] | 苏涵, 闯子维, 张春玲. GDCSM-Argo数据在全球海洋热含量评估中的应用分析[J]. 海洋学研究, 2024, 42(2): 40-54. |
[8] | 武家兴, 彭棋, 张卓, 陈欣颖, 陈鹏, 温亚娟, 王浩丞, 张璐. 基于高、低潮位的西江感潮河段潮汐特征分析[J]. 海洋学研究, 2024, 42(2): 91-103. |
[9] | 岳小岚, 徐林, 符格意, 许学伟. 海洋赤杆菌科菌株的类胡萝卜素合成基因分析[J]. 海洋学研究, 2024, 42(1): 91-105. |
[10] | 龚芳, 朱伯仲, 李腾, 王雨馨, 李鸿喆, 何贤强, 张清. 南太平洋典型岛国海洋生态环境状况及其对汤加火山爆发的响应[J]. 海洋学研究, 2023, 41(3): 101-114. |
[11] | 戈玉宇, 廖光洪. 海洋次表层SCVs的特征与成因机制:问题与进展[J]. 海洋学研究, 2023, 41(2): 45-60. |
[12] | 于雷, 李三忠, 索艳慧, 王秀娟. 海岸海洋碳循环过程与CO2负排放[J]. 海洋学研究, 2023, 41(1): 14-25. |
[13] | 董迪, 黄华梅, 高晴, 陈绵润, 杨熙. 海岸带蓝碳生态系统保护空缺分析——以广东和广西为例[J]. 海洋学研究, 2023, 41(1): 110-120. |
[14] | 许冬, 葛倩, 韩喜彬, 邓韬, 肖婷露. 海洋沉积源-汇过程的驱动因素:以北部湾为例[J]. 海洋学研究, 2022, 40(3): 17-32. |
[15] | 姜杰, 张涛, 蔡晓仙, 吴招才, . 海洋大地电磁揭示了西太平洋苏达海山的电阻率结构[J]. 海洋学研究, 2022, 40(2): 42-52. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||