[1] |
MORROW R, LE TRAON P Y. Recent advances in observing mesoscale ocean dynamics with satellite altimetry[J]. Advances in Space Research, 2012, 50(8): 1062-1076.
|
[2] |
WANG H Z, LIU D, ZHANG W M, et al. Characterizing the capability of mesoscale eddies to carry drifters in the northwest Pacific[J]. Journal of Oceanology and Limnology, 2020, 38(6): 1711-1728.
|
[3] |
DONG C M, MCWILLIAMS J C, LIU Y, et al. Global heat and salt transports by eddy movement[J]. Nature Commu-nications, 2014, 5: 3294.
|
[4] |
JI J L, DONG C M, ZHANG B, et al. An oceanic eddy statistical comparison using multiple observational data in the Kuroshio extension region[J]. Acta Oceanologica Sinica, 2017, 36(3): 1-7.
|
[5] |
FRENGER I, MÜNNICH M, GRUBER N, et al. Southern Ocean eddy phenomenology[J]. Journal of Geophysical Research: Oceans, 2015, 120(11): 7413-7449.
|
[6] |
CHELTON D B, SCHLAX M G, SAMELSON R M, et al. Global observations of large oceanic eddies[J]. Geophysical Research Letters, 2007, 34(15): L15606.
|
[7] |
董昌明. 海洋涡旋探测与分析[M]. 北京: 科学出版社, 2015.
|
|
DONG C M. Oceanic eddy detection and analysis[M]. Beijing: Science Press, 2015.
|
[8] |
FRENGER I, GRUBER N, KNUTTI R, et al. Imprint of Southern Ocean eddies on winds, clouds and rainfall[J]. Nature Geoscience, 2013, 6: 608-612.
|
[9] |
GAUBE P, CHELTON D B, SAMELSON R M, et al. Satellite observations of mesoscale eddy-induced Ekman pumping[J]. Journal of Physical Oceanography, 2015, 45(1): 104-132.
|
[10] |
GAUBE P, BARCELÓ C, MCGILLICUDDY D J Jr, et al. The use of mesoscale eddies by juvenile loggerhead sea turtles (Caretta caretta) in the southwestern Atlantic[J]. PLoS One, 2017, 12(3): e0172839.
|
[11] |
李佳讯, 张韧, 陈奕德, 等. 海洋中尺度涡建模及其在水声传播影响研究中的应用[J]. 海洋通报, 2011, 30(1):37-46.
|
|
LI J X, ZHANG R, CHEN Y D, et al. Ocean mesoscale eddy modeling and its application in studying the effect on underwater acoustic propagation[J]. Marine Science Bulletin, 2011, 30(1): 37-46.
|
[12] |
DONG C M, LIU Y, LUMPKIN R, et al. A scheme to identify loops from trajectories of oceanic surface drifters: An application in the Kuroshio extension region[J]. Journal of Atmospheric and Oceanic Technology, 2011, 28(9): 1167-1176.
|
[13] |
NENCIOLI F, DONG C M, DICKEY T, et al. A vector geometry-based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the southern California bight[J]. Journal of Atmospheric and Oceanic Technology, 2010, 27(3): 564-579.
|
[14] |
ZHANG C H, LI H L, LIU S T, et al. Automatic detection of oceanic eddies in reanalyzed SST images and its application in the East China Sea[J]. Science China Earth Sciences, 2015, 58(12): 2249-2259.
|
[15] |
SUN W J, LIU Y, CHEN G X, et al. Three-dimensional properties of mesoscale cyclonic warm-core and anticyclonic cold-core eddies in the South China Sea[J]. Acta Oceanologica Sinica, 2021, 40(10): 17-29.
|
[16] |
XU G J, YANG J S, DONG C M, et al. Statistical study of submesoscale eddies identified from synthetic aperture radar images in the Luzon Strait and adjacent seas[J]. International Journal of Remote Sensing, 2015, 36(18): 4621-4631.
|
[17] |
JI Y X, XU G J, DONG C M, et al. Submesoscale eddies in the East China Sea detected from SAR images[J]. Acta Oceanologica Sinica, 2021, 40(3): 18-26.
|
[18] |
OKUBO A. Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences[J]. Deep Sea Research and Oceanographic Abstracts, 1970, 17(3): 445-454.
|
[19] |
WEISS J. The dynamics of enstrophy transfer in two-dimensional hydrodynamics[J]. Physica D: Nonlinear Phenomena, 1991, 48(2/3): 273-294.
|
[20] |
HUNT J C R. Vorticity and vortex dynamics in complex turbulent flows[J]. Transactions of the Canadian Society for Mechanical Engineering, 1987, 11(1): 21-35.
|
[21] |
LIU C Q, WANG Y Q, YANG Y, et al. New omega vortex identification method[J]. Science China Physics, Mechanics & Astronomy, 2016, 59(8): 684711.
|
[22] |
CHONG M S, PERRY A E, CANTWELL B J. A general classification of three-dimensional flow fields[J]. Physics of Fluids A: Fluid Dynamics, 1990, 2(5): 765-777.
|
[23] |
JEONG J, HUSSAIN F. On the identification of a vortex[J]. Journal of Fluid Mechanics, 1995, 285: 69-94.
|
[24] |
DOGLIOLI A M, BLANKE B, SPEICH S, et al. Tracking coherent structures in a regional ocean model with wavelet analysis: Application to Cape Basin eddies[J]. Journal of Geophysical Research: Oceans, 2007, 112(C5): C05043.
|
[25] |
CHAIGNEAU A, GIZOLME A, GRADOS C. Mesoscale eddies off Peru in altimeter records: Identification algorithms and eddy spatio-temporal patterns[J]. Progress in Oceano-graphy, 2008, 79(2/3/4): 106-119.
|
[26] |
FRANZ K, ROSCHER R, MILIOTO A, et al. Ocean eddy identification and tracking using neural networks[C]//2018 IEEE International Geoscience and Remote Sensing Sympo-sium(IGARSS). IEEE, 2018: 6887-6890.
|
[27] |
LGUENSAT R, SUN M, FABLET R, et al. EddyNet: A deep neural network for pixel-wise classification of oceanic eddies[C]//2018 IEEE International Geoscience and Remote Sensing Symposium(IGARSS). IEEE, 2018: 1764-1767.
|
[28] |
LI X F, LIU B, ZHENG G, et al. Deep-learning-based information mining from ocean remote-sensing imagery[J]. National Science Review, 2020, 7(10): 1584-1605.
DOI
PMID
|
[29] |
DUO Z J, WANG W K, WANG H Z. Oceanic mesoscale eddy detection method based on deep learning[J]. Remote Sensing, 2019, 11(16): 1921.
|
[30] |
SANTANA O J, HERNÁNDEZ-SOSA D, SMITH R N. Oceanic mesoscale eddy detection and convolutional neural network complexity[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 113: 102973.
|
[31] |
张盟, 杨玉婷, 孙鑫, 等. 基于深度卷积网络的海洋涡旋检测模型[J]. 南京航空航天大学学报, 2020, 52(5):708-713.
|
|
ZHANG M, YANG Y T, SUN X, et al. Ocean eddy detection model based on deep convolution neural network[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2020, 52(5): 708-713.
|
[32] |
刘启明, 杨树国, 赵莉. 基于深度卷积神经网络的海洋多目标涡旋检测方法[J]. 青岛科技大学学报:自然科学版, 2022, 43(4):120-126.
|
|
LIU Q M, YANG S G, ZHAO L. Ocean multi-eddy detection method based on deep convolution neural network[J]. Journal of Qingdao University of Science and Technology: Natural Science Edition, 2022, 43(4): 120-126.
|
[33] |
LIU Y J, LI X F, REN Y B. A deep learning model for oceanic mesoscale eddy detection based on multi-source remote sensing imagery[C]//2020 IEEE International Geoscience and Remote Sensing Symposium(IGARSS). IEEE, 2020: 6762-6765.
|
[34] |
沈飙, 陈扬, 杨琛, 等. 海洋科学中尺度涡的计算机视觉检测和分析方法[J]. 数据与计算发展前沿, 2020, 2(6):30-41.
|
|
SHEN B, CHEN Y, YANG C, et al. Computer vision detection and analysis of mesoscale eddies in marine science[J]. Frontiers of Data & Computing, 2020, 2(6): 30-41.
|
[35] |
LIU Y J, ZHENG Q A, LI X F. Characteristics of global ocean abnormal mesoscale eddies derived from the fusion of sea surface height and temperature data by deep learning[J]. Geophysical Research Letters, 2021, 48(17): e94772.
|
[36] |
CAO L J, ZHANG D J, ZHANG X F, et al. Detection and identification of mesoscale eddies in the South China Sea based on an artificial neural network model—YOLOF and remotely sensed data[J]. Remote Sensing, 2022, 14(21): 5411.
|
[37] |
YAN Z F, CHONG J S, ZHAO Y W, et al. Multifeature fusion neural network for oceanic phenomena detection in SAR images[J]. Sensors, 2019, 20(1): 210.
|
[38] |
DU Y L, SONG W, HE Q, et al. Deep learning with multi-scale feature fusion in remote sensing for automatic oceanic eddy detection[J]. Information Fusion, 2019, 49: 89-99.
|
[39] |
ZHANG D, GADE M, ZHANG J W. SAR eddy detection using mask-RCNN and edge enhancement[C]//2020 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), September 26-October 2, 2020, Waikoloa, HI, USA. IEEE, 2020: 1604-1607.
|
[40] |
贾翊文, 荆文龙, 杨骥, 等. 基于深度学习的SAR影像海洋涡旋检测算法对比分析[J]. 海洋科学进展, 2024, 42(1):137-148.
|
|
JIA Y W, JING W L, YANG J, et al. Comparative analysis of ocean eddy detection algorithms based on deep learning in SAR images[J]. Advances in Marine Science, 2024, 42(1): 137-148.
|
[41] |
LIU F Y, ZHOU H, HUANG W M, et al. Cross-domain submesoscale eddy detection neural network for HF radar[J]. Remote Sensing, 2021, 13(13): 2441.
|
[42] |
XU G J, CHENG C, YANG W X, et al. Oceanic eddy identification using an AI scheme[J]. Remote Sensing, 2019, 11: 1349.
|
[43] |
XU G J, XIE W H, DONG C M, et al. Application of three deep learning schemes into oceanic eddy detection[J]. Frontiers in Marine Science, 2021, 8: 672334.
|
[44] |
HANG R L, LI G, XUE M, et al. Identifying oceanic eddy with an edge-enhanced multiscale convolutional network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 9198-9207.
|
[45] |
ZHAO Y X, FAN Z L, LI H T, et al. SymmetricNet: End-to-end mesoscale eddy detection with multi-modal data fusion[J]. Frontiers in Marine Science, 2023, 10: 1174818.
|
[46] |
杜艳玲, 王丽丽, 黄冬梅, 等. 融合密集特征金字塔的改进R2CNN海洋涡旋自动检测[J]. 智能系统学报, 2023, 18(2):341-351.
|
|
DU Y L, WANG L L, HUANG D M, et al. Improved R2CNN ocean eddy automatic detection with a dense feature pyramid[J]. CAAI Transactions on Intelligent Systems, 2023, 18(2): 341-351.
|
[47] |
FAN Z L, ZHONG G Q. SymmetricNet: A mesoscale eddy detection method based on multivariate fusion data[Z/OL]. arXiv, 2019: 1909. 13411. https://arxiv.org/abs/1909.13411v1.
|
[48] |
XIA L H, CHEN G, CHEN X Y, et al. Submesoscale oceanic eddy detection in SAR images using context and edge association network[J]. Frontiers in Marine Science, 2022, 9: 1023624.
|
[49] |
ZHANG Y Y, LIU N, ZHANG Z Y, et al. Detection of Bering Sea slope mesoscale eddies derived from satellite altimetry data by an attention network[J]. Remote Sensing, 2022, 14(19): 4974.
|
[50] |
SAIDA S J, SAHOO S P, ARI S. Deep convolution neural network based semantic segmentation for ocean eddy detection[J]. Expert Systems with Applications, 2023, 219: 119646.
|
[51] |
ZHAO N, HUANG B X, YANG J, et al. Oceanic eddy identification using pyramid split attention U-net with remote sensing imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 1-5.
|
[52] |
杜艳玲, 吴天宇, 陈括, 等. 融合上下文和注意力的海洋涡旋小目标检测[J]. 中国图象图形学报, 2023, 28(11):3509-3519.
|
|
DU Y L, WU T Y, CHEN K, et al. Small object detection for ocean eddies using contextual information and attention mechanism[J]. Journal of Image and Graphics, 2023, 28(11): 3509-3519.
|