海洋学研究 ›› 2024, Vol. 42 ›› Issue (3): 88-98.DOI: 10.3969/j.issn.1001-909X.2024.03.007

• 研究论文 • 上一篇    下一篇

基于ConvLSTM的中国东南沿海波浪智能预报和评估

金阳1(), 韩磊1, 金梅兵1,2,*(), 董昌明1,2   

  1. 1.南京信息工程大学 海洋科学学院,江苏 南京 210044
    2.南方海洋科学与工程广东省实验室(珠海),广东 珠海 519080
  • 收稿日期:2024-03-04 修回日期:2024-05-11 出版日期:2024-09-15 发布日期:2024-11-25
  • 通讯作者: *金梅兵(1966—),男,教授,主要从事物理海洋学研究,E-mail:mjin@nuist.edu.cn
  • 作者简介:金阳(1998—),女,辽宁省抚顺市人,主要从事物理海洋学研究,E-mail:20211209009@nuist.edu.cn
  • 基金资助:
    国家重点研发计划项目(2023YFC3008200);江苏省研究生科研与实践创新计划项目(KYCX22_1171)

Intelligent wave forecasting and evaluation along the southeast coast of China based on ConvLSTM method

JIN Yang1(), HAN Lei1, JIN Meibing1,2,*(), DONG Changming1,2   

  1. 1. School of Marine Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
    2. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
  • Received:2024-03-04 Revised:2024-05-11 Online:2024-09-15 Published:2024-11-25

摘要:

相较于半理论半分析和数值模型的波浪预报方法,智能波浪预报有着精度高、计算资源需求低的优势。该文基于卷积长短期记忆网络(convolutional long short-term memory network, ConvLSTM)算法,建立了有效波高(significant wave height, SWH)二维预报模型,以中国东南沿海2014—2022年ERA5数据进行训练,通过敏感性试验优化模型配置,并开展中国东南沿海SWH在2023年4个预报时效(6 h、12 h、18 h、24 h)下的预测性能评估。敏感性试验显示,输入时间序列长度N=4(即输入-18 h, -12 h, -6 h, 0 h的SWH值)时,模型在4个预报时效下的准确性均优于其他时间序列长度;输入物理要素组合为SWH、平均波向和海面10 m 风矢量时,模型在12 h、18 h和24 h预报时效下的准确性优于其他组合。通过对ConvLSTM模型训练及配置的精细调整,可以实现对中国东南沿海SWH的二维、高精度的智能预报。

关键词: 中国近海, 卷积长短期记忆网络, 数据驱动, 海浪, 有效波高, 二维预报模型, 短期预报, 人工智能, 深度学习

Abstract:

Compared with the semi-theoretical and semi-analytical wave forecasting and numerical modeling,artificial intelligence wave forecasting has the advantages of higher forecasting accuracy and lower computational resource requirements. In this paper, a two-dimensional significant wave height (SWH) forecasting model for the southeast coast of China is established based on the convolutional long short-term memory network (ConvLSTM) algorithm using ERA5 (ECMWF Reanalysis v5) reanalysis data as the initial field. The data from 2014-2022 are used to train the forecasts of SWH for the next 6 h, 12 h, 18 h and 24 h, and the data from 2023 are used for testing. Sensitivity tests are carried out to optimize the model configuration and evaluate the prediction performance of SWH in the southeast coast of China at four period validity (6 h, 12 h, 18 h, 24 h) in 2023. Sensitivity tests show that when input time series length N=4(input SWH value of -18 h, -12 h, -6 h, 0 h), the accuracies of the model at four period validity are better than those of other time series length. When the combination of input physical elements is SWH, mean wave direction and sea surface 10 m wind vector, the accuracy of the model is better than other combinations at 12 h, 18 h and 24 h. Through the fine-tuning of ConvLSTM model training and configuration, the two-dimensional and high-precision intelligent prediction of SWH in the southeast coast of China can be realized.

Key words: coast of China, convolutional long short-term memory network (ConvLSTM), data-driven, wave, significant wave height (SWH), two-dimensional prediction model, short-time forecast, artificial intelligence, deep learning

中图分类号: