海洋学研究 ›› 2024, Vol. 42 ›› Issue (4): 100-113.DOI: 10.3969/j.issn.1001-909X.2024.04.009

• 研究论文 • 上一篇    下一篇

深水国际海缆的损害机制:海底地震

张孟然1,2(), 谢安远1,3,*(), 贺惠忠1,3, 陆茸1,3, 汤民强1,3   

  1. 1.自然资源部海洋环境探测技术与应用重点实验室,广东 广州 510300
    2.华海通信技术有限公司,天津 300467
    3.自然资源部南海调查技术中心,广东 广州 510300
  • 收稿日期:2023-07-06 修回日期:2023-10-07 出版日期:2024-12-15 发布日期:2025-02-08
  • 通讯作者: 谢安远
  • 作者简介:*谢安远(1992—),男,工程师,主要从事海洋地质与地球物理方面的调查与研究,E-mail: xay_smst@163.com
    张孟然(1992—),男,河北省保定市人,工程师,主要从事国际海底光缆路由规划、桌面研究、勘察管理和埋设施工方案设计等方面的工作,E-mail: zhangmengran@hmntech.com
  • 基金资助:
    自然资源部海洋环境探测技术与应用重点实验室自主课题(MESTA-2020-C002)

Mechanism of deep-water international submarine cables damage: submarine earthquakes

ZHANG Mengran1,2(), XIE Anyuan1,3,*(), HE Huizhong1,3, LU Rong1,3, TANG Minqiang1,3   

  1. 1. Key Laboratory of Marine Environmental Survey Technology and Application, MNR, Guangzhou 510300, China
    2. HMN Technologies Co., Ltd., Tianjin 300467, China
    3. South China Sea Marine Survey and Technology Center, MNR, Guangzhou 510300, China
  • Received:2023-07-06 Revised:2023-10-07 Online:2024-12-15 Published:2025-02-08
  • Contact: XIE Anyuan

摘要:

海底地震是损害深水国际海缆的主要因素之一,认识海缆震损过程和地震引发的海底浊流对海缆的损害机制,对维护国际海底通信安全具有重要意义。本文结合最新海底地形、地貌研究成果,利用国际海缆工程专业软件Makaiplan研究大浅滩和恒春震后海缆大规模震损过程,并厘清了海缆损害规律与震后海底浊流过程之间的关系,总结出海缆震损机制。结果表明,海缆断点集中分布在海底峡谷和海沟内,造成海缆损坏的海底峡谷和海沟浊流的运动时速可达数十公里至数百公里每小时。陆上河流和陆架河道为浊流发育提供物源输入,海底峡谷和海沟为浊流运动大面积破坏海缆提供通道。震后,被动陆缘上陆坡发育的峡谷浊流可破坏陆坡、陆隆和深海平原上海缆,浊流最快速度出现在陆坡并在深海平原自加速;主动陆缘陆坡不同位置可同时发育浊流,对峡谷和海沟内海缆造成多次冲击,浊流最快速度和自加速现象出现在海沟。海缆防震措施包括:尽量避免海缆路由在与陆上河流或陆架河道连通的海底峡谷及海沟处交越,难以避免的时候则使用带外铠装浅水型海缆,海缆稍悬浮于峡谷或海沟底部并加装Uraduct,改变深水海缆的横截面形状等。

关键词: 海底地震, 深水海缆, 海底峡谷, 海沟, 浊流, 自加速, 机制, 防震措施

Abstract:

Submarine earthquake is one of the most major factors causing deep-water international submarine cables damage. Understanding the process of submarine cables damage and the mechanism of submarine cables damage caused by turbidity currents after earthquake are of great significance to the security maintenance of international submarine communications. Combined with the lastest research result of global seabed topography and using professional international submarine cables engineering software Makaiplan, the process of plenty of submarine cables damage after Grand Banks Earthquake and Hengchun Earthquake were studied, then the relationship between the pattern of submarine cable damage and the developing process of turbidity currents after earthquake was found, and the mechanism of submarine cables damage caused by turbidity currents after earthquake was summarized. Study result shows that submarine cables break points are located intentively in submarine canyons and trenches. The movement speed of turbidity currents in submarine canyon and submarine trench, which caused submarine cable damage, can reach several ten kilometers to several hundred kilometres per hour. Terrestrial rivers and continental shelf undersea river channels provide materials transportation for the development of turbidity currents. Submarine canyons and trenchs are the pathes of turbidity currents movement then damage plenty of submarine cables. The turbidity currents that developed from upper continental slope in passive continental margin after earthquake can damage submarine cables laid on continental slope, continental rise and abyssal plain. This kind of turbidity currents achieves maximum speed on continental slope, then self-accelerate on abyssal plain. Multiple turbidity currents can develop at different positions of continental slope at the same time in active continental margin, then strike submarine cables which laid on canyons and trenches for multiple times. This kind of turbidity currents achieves maximum speed and self-accelerates in submarine trenches. There are several earthquake-resistance measures: submarine cable routes trying to avoid crossing submarine canyons and trenches which connected to terrestrial rivers or continental shelf channels; using shallow water type submarine cable which has outer armor protection when crossing inevitably; laying submarine cables suspended slightly on the bottom of canyons or trenches with Uraduct protection on them; changing the cross-section shape of submarine cable.

Key words: submarine earthquake, deep-water cables, submarine canyon, submarine trench, turbidity currents, self-accelerate, mechanism, earthquake-resistance measures

中图分类号: