海洋学研究 ›› 2024, Vol. 42 ›› Issue (4): 58-69.DOI: 10.3969/j.issn.1001-909X.2024.04.006

• 研究论文 • 上一篇    下一篇

春季杭州湾及其邻近海域溶解氧化亚氮的分布、通量和影响因素

邢明尧1,2,3(), 林华2,3,*(), 杨志2,3, 王斌2,3, 李杨杰2,3, 张乾江3, 陈倩娜2,3, 郑豪1, 陈建芳2,3   

  1. 1.浙江大学 海洋学院,浙江 舟山 316021
    2.自然资源部海洋生态系统动力学重点实验室,浙江 杭州 310012
    3.自然资源部第二海洋研究所,浙江 杭州 310012
  • 收稿日期:2023-12-19 修回日期:2024-02-12 出版日期:2024-12-15 发布日期:2025-02-08
  • 通讯作者: 林华
  • 作者简介:*林华(1983—),男,助理研究员,主要从事海洋生物地球化学研究,E-mail:linhua@sio.org.cn
    邢明尧(1999—),女,山东省威海市人,主要从事海洋温室气体的生物地球化学研究,E-mail:22134098@zju.edu.cn
  • 基金资助:
    浙江省“尖兵”研发攻关计划(2023C03013);浙江省“尖兵”研发攻关计划(2022C03044);国家自然科学基金(41706086);国家重点研发计划(2021YFC3101702);自然资源部海洋生态系统动力学重点实验室开放研究基金(MED202202);浙江省自然科学基金(LY20D060007);浙江省自然科学基金(LZ22D060002)

Distribution, flux and influencing factors of dissolved nitrous oxide in Hangzhou Bay and its adjacent waters in spring

XING Mingyao1,2,3(), LIN Hua2,3,*(), YANG Zhi2,3, WANG Bin2,3, LI Yangjie2,3, ZHANG Qianjiang3, CHEN Qianna2,3, ZHENG Hao1, CHEN Jianfang2,3   

  1. 1. Ocean College, Zhejiang University, Zhoushan 316021, China
    2. Key Laboratory of Marine Ecosystem Dynamics, MNR, Hangzhou 310012, China
    3. Second Institute of Oceanography, MNR, Hangzhou 310012, China
  • Received:2023-12-19 Revised:2024-02-12 Online:2024-12-15 Published:2025-02-08
  • Contact: LIN Hua

摘要:

本研究基于2022年3月在杭州湾海域的航次调查,阐述了春季杭州湾及其邻近海域溶解氧化亚氮(N2O)的空间分布特征与海-气交换通量,并分析其影响因素。 结果表明,春季杭州湾及其邻近海域表层水体溶解N2O的浓度与饱和度范围分别为12.5~21.3 nmol·L-1和115%~183%,其中,上、中、下游N2O浓度平均值分别为17.2±2.9、14.1±0.8和13.2±0.7 nmol·L-1,饱和度平均值分别为151%±17%、125%±6%和123%±6%,所有站位的溶解N2O均处于过饱和状态。表层水体N2O浓度和饱和度的分布显示出明显的空间差异性,高值集中在上游,且自西向东逐渐递减,中、下游呈现自北向南逐渐递减的趋势。温度、河口混合、河流输入和生物过程对春季杭州湾及其邻近海域溶解N2O的分布具有重要影响。N2O海-气交换通量范围为11.4~71.2 μmol·m-2·d-1,平均值为29.5±16.0 μmol·m-2·d-1。与国内其他河口、海湾相比,杭州湾的N2O海-气交换通量相对较高,N2O释放潜力大。根据海域面积,本研究初步估算春季杭州湾及其邻近海域N2O的释放量为3.5×105 mol·d-1,表明其在大气N2O排放中扮演着重要的角色。

关键词: 杭州湾, 钱塘江, N2O, 分布特征, 硝化作用, 反硝化作用, 海-气交换通量, 源汇结构

Abstract:

Based on a survey in Hangzhou Bay in March 2022, the distribution and sea-air exchange flux of N2O in Hangzhou Bay and its adjacent waters in spring were investigated, and the influencing factors were analyzed. The dissolved N2O concentration and saturation of surface water were 12.5-21.3 nmol·L-1 and 115%-183%, respectively. The average N2O concentration in the upper, middle and lower waters were 17.2±2.9, 14.1±0.8 and 13.2±0.7 nmol·L-1, respectively, and the average saturation were 151%±17%, 125%±6% and 123%±6%, respectively. Dissolved N2O in all sampling sites were in a supersaturated state. The spatial distribution of N2O concentration and saturation in the surface water exhibited significant variations, with high values concentrated in the upstream area and gradually decreasing from west to east, while these showed a decreasing trend from north to south in middle and lower areas. The distribution of N2O in the Hangzhou Bay and its adjacent waters was influenced by multiple factors such as temperature, estuarine mixing, river input and in situ bioproduction. The sea-air N2O exchange flux ranged from 11.4 to 71.2 μmol·m-2·d-1, with an average of 29.5±16.0 μmol·m-2·d-1. Comparing with other domestic estuaries and bays, this is relatively high in Hangzhou Bay, indicating a significant potential for N2O release. Combining the sea-air exchange flux and sea area, this study preliminarily estimated that the N2O emission in Hangzhou Bay and its adjacent waters in spring was 3.5×105 mol·d-1, indicating its important role in atmospheric N2O emissions.

Key words: Hangzhou Bay, Qiantang River, nitrous oxide, distribution feature, nitration, denitrification, sea-air exchange flux, source and sink pattern

中图分类号: