海洋学研究 ›› 2024, Vol. 42 ›› Issue (4): 58-69.DOI: 10.3969/j.issn.1001-909X.2024.04.006
邢明尧1,2,3(), 林华2,3,*(
), 杨志2,3, 王斌2,3, 李杨杰2,3, 张乾江3, 陈倩娜2,3, 郑豪1, 陈建芳2,3
收稿日期:
2023-12-19
修回日期:
2024-02-12
出版日期:
2024-12-15
发布日期:
2025-02-08
通讯作者:
林华
作者简介:
*林华(1983—),男,助理研究员,主要从事海洋生物地球化学研究,E-mail:linhua@sio.org.cn。基金资助:
XING Mingyao1,2,3(), LIN Hua2,3,*(
), YANG Zhi2,3, WANG Bin2,3, LI Yangjie2,3, ZHANG Qianjiang3, CHEN Qianna2,3, ZHENG Hao1, CHEN Jianfang2,3
Received:
2023-12-19
Revised:
2024-02-12
Online:
2024-12-15
Published:
2025-02-08
Contact:
LIN Hua
摘要:
本研究基于2022年3月在杭州湾海域的航次调查,阐述了春季杭州湾及其邻近海域溶解氧化亚氮(N2O)的空间分布特征与海-气交换通量,并分析其影响因素。 结果表明,春季杭州湾及其邻近海域表层水体溶解N2O的浓度与饱和度范围分别为12.5~21.3 nmol·L-1和115%~183%,其中,上、中、下游N2O浓度平均值分别为17.2±2.9、14.1±0.8和13.2±0.7 nmol·L-1,饱和度平均值分别为151%±17%、125%±6%和123%±6%,所有站位的溶解N2O均处于过饱和状态。表层水体N2O浓度和饱和度的分布显示出明显的空间差异性,高值集中在上游,且自西向东逐渐递减,中、下游呈现自北向南逐渐递减的趋势。温度、河口混合、河流输入和生物过程对春季杭州湾及其邻近海域溶解N2O的分布具有重要影响。N2O海-气交换通量范围为11.4~71.2 μmol·m-2·d-1,平均值为29.5±16.0 μmol·m-2·d-1。与国内其他河口、海湾相比,杭州湾的N2O海-气交换通量相对较高,N2O释放潜力大。根据海域面积,本研究初步估算春季杭州湾及其邻近海域N2O的释放量为3.5×105 mol·d-1,表明其在大气N2O排放中扮演着重要的角色。
中图分类号:
邢明尧, 林华, 杨志, 王斌, 李杨杰, 张乾江, 陈倩娜, 郑豪, 陈建芳. 春季杭州湾及其邻近海域溶解氧化亚氮的分布、通量和影响因素[J]. 海洋学研究, 2024, 42(4): 58-69.
XING Mingyao, LIN Hua, YANG Zhi, WANG Bin, LI Yangjie, ZHANG Qianjiang, CHEN Qianna, ZHENG Hao, CHEN Jianfang. Distribution, flux and influencing factors of dissolved nitrous oxide in Hangzhou Bay and its adjacent waters in spring[J]. Journal of Marine Sciences, 2024, 42(4): 58-69.
图1 研究区域与采样站位 (红色虚线表示上、中、下游的分界线。)
Fig.1 Study area and sampling stations (The red dotted lines show the dividing lines among upper, middle, and lower reaches.)
项目 | 温度/℃ | 盐度 | c(NO3-)/ (μmol·L-1) | c(NH4+)/ (μmol·L-1) | c(NO2-)/ (μmol·L-1) | c(DIN)/ (μmol·L-1) | c(DO)/ (μmol·L-1) | c(N2O) / (nmol·L-1) | R(N2O)/% |
---|---|---|---|---|---|---|---|---|---|
上游表层 | 13.6±1.6 | 4.6±3.4 | 146.5±13.8 | 4.1±3.5 | 2.6±1.3 | 153.2±14.6 | 17.2±2.9 | 151±17 | |
中游表层 | 12.0±0.4 | 16.7±3.2 | 83.6±19.0 | 0.8±0.3 | 0.3±0.3 | 84.8±19.0 | 305±8 | 14.1±0.8 | 125±6 |
中游底层 | 11.5±0.3 | 17.1±3.3 | 81.4±18.1 | 1.1±0.4 | 0.3±0.2 | 82.8±18.2 | 307±7 | 14.2±0.6 | 125±5 |
下游表层 | 12.1±0.7 | 22.2±5.2 | 50.9±17.5 | 1.2±1.0 | 0.4±0.4 | 52.5±18.7 | 295±14 | 13.2±0.7 | 123±6 |
下游底层 | 12.1±0.6 | 30.5±2.1 | 25.7±13.4 | 0.6±0.3 | 0.3±0.1 | 26.6±13.1 | 283±8 | 12.4±0.6 | 120±7 |
表1 春季杭州湾及其邻近海域水体温度、盐度和水文化学参数的平均值
Tab.1 Average water temperature, salinity and hydrochemical parameters of Hangzhou Bay and its adjacent waters in spring
项目 | 温度/℃ | 盐度 | c(NO3-)/ (μmol·L-1) | c(NH4+)/ (μmol·L-1) | c(NO2-)/ (μmol·L-1) | c(DIN)/ (μmol·L-1) | c(DO)/ (μmol·L-1) | c(N2O) / (nmol·L-1) | R(N2O)/% |
---|---|---|---|---|---|---|---|---|---|
上游表层 | 13.6±1.6 | 4.6±3.4 | 146.5±13.8 | 4.1±3.5 | 2.6±1.3 | 153.2±14.6 | 17.2±2.9 | 151±17 | |
中游表层 | 12.0±0.4 | 16.7±3.2 | 83.6±19.0 | 0.8±0.3 | 0.3±0.3 | 84.8±19.0 | 305±8 | 14.1±0.8 | 125±6 |
中游底层 | 11.5±0.3 | 17.1±3.3 | 81.4±18.1 | 1.1±0.4 | 0.3±0.2 | 82.8±18.2 | 307±7 | 14.2±0.6 | 125±5 |
下游表层 | 12.1±0.7 | 22.2±5.2 | 50.9±17.5 | 1.2±1.0 | 0.4±0.4 | 52.5±18.7 | 295±14 | 13.2±0.7 | 123±6 |
下游底层 | 12.1±0.6 | 30.5±2.1 | 25.7±13.4 | 0.6±0.3 | 0.3±0.1 | 26.6±13.1 | 283±8 | 12.4±0.6 | 120±7 |
图3 春季杭州湾及其邻近海域水体N2O浓度和饱和度的水平分布图
Fig.3 Horizontal distribution of N2O concentration and N2O saturation in Hangzhou Bay and its adjacent waters in spring
项目 | FBorges/(μmol·m-2·d-1) | FN2000/(μmol·m-2·d-1) | FW2014/(μmol·m-2·d-1) | 面积/km2 | N2O释放量/(mol·d-1) |
---|---|---|---|---|---|
上游 | 43.0±15.6 | 39.5±14.3 | 34.7±12.5 | 1 250 | 0.5×105 |
中游 | 20.2±5.2 | 18.6±4.8 | 16.3±4.2 | 8 200 | 1.7×105 |
下游 | 17.5±4.9 | 16.1±4.5 | 14.1±3.9 | 7 600 | 1.3×105 |
表2 春季杭州湾及其邻近海域N2O的海-气交换通量与释放量
Tab.2 Sea-air exchange flux and release of N2O in Hangzhou Bay and its adjacent waters in spring
项目 | FBorges/(μmol·m-2·d-1) | FN2000/(μmol·m-2·d-1) | FW2014/(μmol·m-2·d-1) | 面积/km2 | N2O释放量/(mol·d-1) |
---|---|---|---|---|---|
上游 | 43.0±15.6 | 39.5±14.3 | 34.7±12.5 | 1 250 | 0.5×105 |
中游 | 20.2±5.2 | 18.6±4.8 | 16.3±4.2 | 8 200 | 1.7×105 |
下游 | 17.5±4.9 | 16.1±4.5 | 14.1±3.9 | 7 600 | 1.3×105 |
海域 | 调查时间 | N2O浓度/(nmol·L-1) | N2O饱和度/% | N2O海-气交换通量/(μmol·m-2·d-1) | 文献 |
---|---|---|---|---|---|
渤海湾 | 2020年7月 | 32.5±7.0 | 495.1±101 | 25.9±6.7a;32±8.27b | [ |
2020年10月 | 23.2±6.5 | 249.8±80.4 | 22.1±13.3a;19.1±11.5b | [ | |
胶州湾 | 2006年8月 | 8.10±1.38 | 122±20 | 1.37±1.24c;3.31±3.00d | [ |
2006年12月 | 32.26±13.15 | 294±120 | 27.18±16.85c;53.28±33.03d | [ | |
2007年4月 | 17.37±2.65 | 172±29 | 6.83±2.69c;14.38±5.66d | [ | |
2007年10月 | 12.11±0.48 | 143±7 | 3.41±0.55c;7.59±1.23d | [ | |
桑沟湾 | 2013年4月 | 11.77±0.52 | 99.21±2.85 | -0.41±1.37c-0.48±2.86d | [ |
2013年7月 | 10.47±0.61 | 137.99±6.26 | 2.26±0.37c;4.48±0.73d | [ | |
2013年10月 | 10.59±1.02 | 129.76±12.83 | 0.16±0.13c;0.81±0.86d | [ | |
2014年1月 | 17.98±1.94 | 128.01±11.97 | 0.11±0.12c;0.54±0.94d | [ | |
新村湾 | 2020年7月 | 5.52±0.50 | 100±9 | 0.01±0.09c;0.10±0.53d | [ |
2021年1月 | 7.11±0.84 | 88±11 | -0.07±0.12c;-0.31±0.70d | [ | |
长江口 | 2011年3月 | 11.1 | 107 | 0.01a;0.001b | [ |
2011年5月 | 10.1±0.7 | 122±7 | 4.4±5.9a;4.4±6.3b | [ | |
2011年8月 | 10.2±0.7 | 153±10 | 9.1±5.3a;8.7±5.5b | [ | |
2011年10月 | 7.7±0.6 | 99±5 | 0.2±1.2a;0.2±1.2b | [ | |
2012年3月 | 13.27±6.40 | 111.5±41.4 | 3.2±10.9c;5.5±19.3d;12.2±52.3f | [ | |
2012年7月 | 10.62±5.03 | 155.9±68.4 | 7.3±12.4c;12.7±20.4d;20.4±35.9f | [ | |
珠江口 | 2010年3月 | 8.0~329.0 | 112~3 799 | 2.0~637.0e | [ |
2010年8月 | 8.0~97.0 | 138~1 477 | 0.1~227.0e | [ | |
2011年1月 | 9.0~283.0 | 115~2 740 | 2.0~519.0e | [ | |
九龙江口 | 2020年7月 | 15.3~44.9 | 462.7±167.2 | 13.0~57.0f | [ |
2020年12月 | 17.9~50.2 | 400.5±132.9 | 13.6~61.0f | [ | |
杭州湾 | 2022年3月 | 15.2±2.7 | 136±18 | 29.5±16.0e;27.1±14.7a;23.8±12.9b | 本研究 |
表3 国内不同河口、海湾表层水体溶解N2O的浓度、饱和度和海-气交换通量
Tab.3 Concentrations, saturations and sea-air exchange fluxes of dissolved N2O in surface waters of different domestic estuaries and bays
海域 | 调查时间 | N2O浓度/(nmol·L-1) | N2O饱和度/% | N2O海-气交换通量/(μmol·m-2·d-1) | 文献 |
---|---|---|---|---|---|
渤海湾 | 2020年7月 | 32.5±7.0 | 495.1±101 | 25.9±6.7a;32±8.27b | [ |
2020年10月 | 23.2±6.5 | 249.8±80.4 | 22.1±13.3a;19.1±11.5b | [ | |
胶州湾 | 2006年8月 | 8.10±1.38 | 122±20 | 1.37±1.24c;3.31±3.00d | [ |
2006年12月 | 32.26±13.15 | 294±120 | 27.18±16.85c;53.28±33.03d | [ | |
2007年4月 | 17.37±2.65 | 172±29 | 6.83±2.69c;14.38±5.66d | [ | |
2007年10月 | 12.11±0.48 | 143±7 | 3.41±0.55c;7.59±1.23d | [ | |
桑沟湾 | 2013年4月 | 11.77±0.52 | 99.21±2.85 | -0.41±1.37c-0.48±2.86d | [ |
2013年7月 | 10.47±0.61 | 137.99±6.26 | 2.26±0.37c;4.48±0.73d | [ | |
2013年10月 | 10.59±1.02 | 129.76±12.83 | 0.16±0.13c;0.81±0.86d | [ | |
2014年1月 | 17.98±1.94 | 128.01±11.97 | 0.11±0.12c;0.54±0.94d | [ | |
新村湾 | 2020年7月 | 5.52±0.50 | 100±9 | 0.01±0.09c;0.10±0.53d | [ |
2021年1月 | 7.11±0.84 | 88±11 | -0.07±0.12c;-0.31±0.70d | [ | |
长江口 | 2011年3月 | 11.1 | 107 | 0.01a;0.001b | [ |
2011年5月 | 10.1±0.7 | 122±7 | 4.4±5.9a;4.4±6.3b | [ | |
2011年8月 | 10.2±0.7 | 153±10 | 9.1±5.3a;8.7±5.5b | [ | |
2011年10月 | 7.7±0.6 | 99±5 | 0.2±1.2a;0.2±1.2b | [ | |
2012年3月 | 13.27±6.40 | 111.5±41.4 | 3.2±10.9c;5.5±19.3d;12.2±52.3f | [ | |
2012年7月 | 10.62±5.03 | 155.9±68.4 | 7.3±12.4c;12.7±20.4d;20.4±35.9f | [ | |
珠江口 | 2010年3月 | 8.0~329.0 | 112~3 799 | 2.0~637.0e | [ |
2010年8月 | 8.0~97.0 | 138~1 477 | 0.1~227.0e | [ | |
2011年1月 | 9.0~283.0 | 115~2 740 | 2.0~519.0e | [ | |
九龙江口 | 2020年7月 | 15.3~44.9 | 462.7±167.2 | 13.0~57.0f | [ |
2020年12月 | 17.9~50.2 | 400.5±132.9 | 13.6~61.0f | [ | |
杭州湾 | 2022年3月 | 15.2±2.7 | 136±18 | 29.5±16.0e;27.1±14.7a;23.8±12.9b | 本研究 |
[1] | Intergovernmental Panel on Climate Change. Climate change 2021-The physical science basis[M]. Cambridge, UK: Cambridge University Press, 2023. |
[2] |
RAVISHANKARA A R, DANIEL J S, PORTMANN R W. Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century[J]. Science, 2009, 326(5949): 123-125.
DOI PMID |
[3] |
MURRAY R H, ERLER D V, EYRE B D. Nitrous oxide fluxes in estuarine environments: Response to global change[J]. Global Change Biology, 2015, 21(9): 3219-3245.
DOI PMID |
[4] | TIAN H Q, XU R T, CANADELL J G, et al. A compre-hensive quantification of global nitrous oxide sources and sinks[J]. Nature, 2020, 586(7828): 248-256. |
[5] | BANGE H W, SIM C H, BASTIAN D, et al. Nitrous oxide (N2O) and methane (CH4) in rivers and estuaries of north-western Borneo[J]. Biogeosciences, 2019, 16(22): 4321-4335. |
[6] | SIERRA A, JIMÉNEZ-LÓPEZ D, ORTEGA T, et al. Distribution of N2O in the eastern shelf of the Gulf of Cadiz (SW Iberian Peninsula)[J]. Science of the Total Environment, 2017, 593: 796-808. |
[7] | CHEN S L, ZHANG G A, YANG S L, et al. Temporal variations of fine suspended sediment concentration in the Changjiang River estuary and adjacent coastal waters, China[J]. Journal of Hydrology, 2006, 331(1/2): 137-145. |
[8] | XIE D F, WANG Z B, GAO S, et al. Modeling the tidal channel morphodynamics in a macro-tidal embayment, Hangzhou Bay, China[J]. Continental Shelf Research, 2009, 29(15): 1757-1767. |
[9] | LI G X, LI P, LIU Y, et al. Sedimentary system response to the global sea level change in the East China Seas since the last glacial maximum[J]. Earth-Science Reviews, 2014, 139: 390-405. |
[10] | YANG S Y, BI L, LI C, et al. Major sinks of the Changjiang (Yangtze River)-derived sediments in the East China Sea during the late Quaternary[J]. Geological Society, London, Special Publications, 2016, 429(1): 137-152. |
[11] | 曹飞凤, 代可, 陶琦茹, 等. 杭州湾区近岸海域污染状况分析及治理对策研究[J]. 环境科学与技术, 2020, 43(10):60-69. |
CAO F F, DAI K, TAO Q R, et al. Analysis of pollution status and research on treatment countermeasures in the coastal waters of Hangzhou Bay area[J]. Environmental Science & Technology, 2020, 43(10): 60-69. | |
[12] | YANG J Y T, HSU T C, TAN E H, et al. Sedimentary processes dominate nitrous oxide production and emission in the hypoxic zone off the Changjiang River estuary[J]. Science of the Total Environment, 2022, 827: 154042. |
[13] | ZHU W J, WANG C, HILL J, et al. A missing link in the estuarine nitrogen cycle: Coupled nitrification-denitrification mediated by suspended particulate matter[J]. Scientific Reports, 2018, 8(1): 2282. |
[14] | LI R H, GAO L, PAN C H, et al. Detecting the mechanisms of longitudinal salt transport during spring tides in Qiantang Estuary[J]. Journal of Integrative Environmental Sciences, 2019, 16(1): 123-140. |
[15] | 臧昆鹏, 王菊英, 赵化德, 等. 顶空平衡-双通道气相色谱法测定海水中溶解态甲烷和氧化亚氮[J]. 环境化学, 2014, 33(12):2094-2101. |
ZANG K P, WANG J Y, ZHAO H D, et al. Simultaneous determination of dissolved CH4 and N2O in seawater using head space-dual channel GC system[J]. Environmental Chemistry, 2014, 33(12): 2094-2101. | |
[16] | GRASSHOFF K, KREMLING K, EHRHARDT M. Methods of seawater analysis[M]. [S.l.]: Wiley-VCH, 1999. |
[17] | 徐继荣, 王友绍, 殷建平, 等. 静态顶空气相色谱法测定海水中溶解的N2O[J]. 海洋环境科学, 2005, 24(4):59-62. |
XU J R, WANG Y S, YIN J P, et al. Determination of nitrous oxide dissolved in seawater by static headspace gas chromatographer[J]. Marine Environmental Science, 2005, 24(4): 59-62. | |
[18] | WEISS R F, PRICE B A. Nitrous oxide solubility in water and seawater[J]. Marine Chemistry, 1980, 8(4): 347-359. |
[19] | BENSON B B, KRAUSE D Jr. The concentration and isotopic fractionation of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere1[J]. Limnology and Oceanography, 1984, 29(3): 620-632. |
[20] | BORGES A V, DELILLE B, SCHIETTECATTE L S, et al. Gas transfer velocities of CO2 in three European estuaries (Randers Fjord, Scheldt, and Thames)[J]. Limnology and Oceanography, 2004, 49(5): 1630-1641. |
[21] | NIGHTINGALE P D, MALIN G, LAW C S, et al. In situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile tracers[J]. Global Biogeo-chemical Cycles, 2000, 14(1): 373-387. |
[22] | WANNINKHOF R. Relationship between wind speed and gas exchange over the ocean revisited[J]. Limnology and Oceanography: Methods, 2014, 12: 351-362. |
[23] | 李丽, 臧家业, 刘军, 等. 钱塘江口磷酸盐分布、变化与浮游植物的响应[J]. 海洋科学进展, 2018, 36(2):279-289. |
LI L, ZANG J Y, LIU J, et al. Phosphate distribution, variation and its relationship with phytoplankton changes in the Qiantangjiang River Estuary[J]. Advances in Marine Science, 2018, 36(2): 279-289. | |
[24] | CHEN X L, MA X, GU X J, et al. Seasonal and spatial variations of N2O distribution and emission in the East China Sea and South Yellow Sea[J]. Science of the Total Environment, 2021, 775: 145715. |
[25] | WILCOCK R J, SORRELL B K. Emissions of greenhouse gases CH4 and N2O from low-gradient streams in agriculturally developed catchments[J]. Water, Air, & Soil Pollution, 2008, 188(1): 155-170. |
[26] | 李若华, 黄士稳. 钱塘江河口水质时段离散程度及对污染物通量估算的影响[J]. 水电能源科学, 2024, 42(1):36-39. |
LI R H, HUANG S W. Dispersion degree of water quality and its influence on the estimation for pollutant fluxs in Qiantang Estuary[J]. Water Resources and Power, 2024, 42(1): 36-39. | |
[27] | JI Q X, BABBIN A R, JAYAKUMAR A, et al. Nitrous oxide production by nitrification and denitrification in the Eastern Tropical South Pacific oxygen minimum zone[J]. Geophysical Research Letters, 2015, 42(24): 10755-10764. |
[28] | MA P, LI X Y, CHEN F, et al. The isotopomer ratios of N2O in the Shaying River, the upper Huai River network, Eastern China: The significances of mechanisms and produc-tions of N2O in the heavy ammonia polluted rivers[J]. Science of the Total Environment, 2019, 687: 1315-1326. |
[29] | WU B, LIU F F, WEISER M D, et al. Temperature determines the diversity and structure of N2O-reducing microbial assemblages[J]. Functional Ecology, 2018, 32(7): 1867-1878. |
[30] | IVENS W P, TYSMANS D J, KROEZE C, et al. Modeling global N2O emissions from aquatic systems[J]. Current Opinion in Environmental Sustainability, 2011, 3(5): 350-358. |
[31] | DONG L F, NEDWELL D B, COLBECK I, et al. Nitrous oxide emission from some English and Welsh rivers and estuaries[J]. Water, Air, & Soil Pollution: Focus, 2005, 4(6): 127-134. |
[32] | CODISPOTI L A, CHRISTENSEN J P. Nitrification, denitri-fication and nitrous oxide cycling in the eastern tropical South Pacific Ocean[J]. Marine Chemistry, 1985, 16(4): 277-300. |
[33] | JI Q X, ALTABET M A, BANGE H W, et al. Investigating the effect of El Niño on nitrous oxide distribution in the eastern tropical South Pacific[J]. Biogeosciences, 2019, 16(9): 2079-2093. |
[34] | FARÍAS L, BESOAIN V, GARCÍA-LOYOLA S. Presence of nitrous oxide hotspots in the coastal upwelling area off central Chile: An analysis of temporal variability based on ten years of a biogeochemical time series[J]. Environmental Research Letters, 2015, 10(4): 044017. |
[35] | BAKKER D C E, BANGE H W, GRUBER N, et al. Air-sea interactions of natural long-lived greenhouse gases (CO2, N2O, CH4) in a changing climate[M]//LISS P S, JOHNSON M T. Ocean-atmosphere interactions of gases and particles. Berlin, Heidelberg: Springer, 2014: 113-169. |
[36] | GU T, JIA D, WANG Z, et al. Regional distribution and environmental regulation mechanism of nitrous oxide in the Bohai Sea and North Yellow Sea: A preliminary study[J]. Science of the Total Environment, 2022, 818: 151718. |
[37] | 王雲仟, 罗畅, 宋国栋, 等. 秋、冬季渤海溶解N2O的分布和通量及其影响因素[J]. 海洋环境科学, 2023, 42(1):4-12. |
WANG Y Q, LUO C, SONG G D, et al. Distributions and fluxes of dissolved nitrous oxide in the Bohai Sea in autumn and winter and their influencing factors[J]. Marine Environmental Science, 2023, 42(1): 4-12. | |
[38] | CODISPOTI L A, BRANDES J A, CHRISTENSEN J P, et al. The oceanic fixed nitrogen and nitrous oxide budgets: Moving targets as we enter the anthropocene?[J]. Scientia Marina, 2001, 65(S2): 85-105. |
[39] | WAN X S, SHENG H X, LIU L, et al. Particle-associated denitrification is the primary source of N2O in oxic coastal waters[J]. Nature Communications, 2023, 14(1): 8280. |
[40] | RAO J L, BERNER R A. Time variations of phosphorus and sources of sediments beneath the Chang Jiang (Yangtze River)[J]. Marine Geology, 1997, 139(1/2/3/4): 95-108. |
[41] | 茹荣忠. 杭州湾海域水体悬沙粒度统计分析[J]. 东海海洋, 2002, 20(4):13-18. |
RU R Z. The statistical analysis of suspended sediment particle sizes in the Hangzhou Bay[J]. Donghai Marine Science, 2002, 20(4): 13-18. | |
[42] | ZHANG A Q, LEI K, LANG Q, et al. Identification of nitrogen sources and cycling along freshwater river to estuarine water continuum using multiple stable isotopes[J]. Science of the Total Environment, 2022, 851: 158136. |
[43] | 胡序朋, 李芯芯, 徐成达, 等. 浙江近岸海域悬浮颗粒物中磷的赋存形态及分布特征研究[J]. 海洋学报, 2021, 43(4):106-121. |
HU X P, LI X X, XU C D, et al. Characteristics of phosphorus speciation and distribution in suspended parti-culate matter in the Zhejiang coastal area[J]. Haiyang Xuebao, 2021, 43(4): 106-121. | |
[44] |
YANG S, CHANG B X, WARNER M J, et al. Global reconstruction reduces the uncertainty of oceanic nitrous oxide emissions and reveals a vigorous seasonal cycle[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(22): 11954-11960.
DOI PMID |
[45] | WANG Z, GU T, WEN Y J, et al. Distributions, sources, and air-sea fluxes of nitrous oxide in Bohai Bay, China[J]. Frontiers in Marine Science, 2023, 10: 1105016. |
[46] | 李佩佩, 张桂玲, 赵静, 等. 胶州湾及周边海域大气和海水中N2O和CH4的分布及海气交换通量[J]. 中国海洋大学学报:自然科学版, 2009, 39(4):805-814. |
LI P P, ZHANG G L, ZHAO J, et al. The distributions and atmospheric fluxes of nitrous oxide and methane in Jiaozhou Bay and its adjacent coastal area[J]. Periodical of Ocean University of China, 2009, 39(4): 805-814. | |
[47] | 宋达. 桑沟湾溶存氧化亚氮的产生、分布和通量[D]. 青岛: 中国海洋大学, 2015. |
SONG D. Production, distribution and flux of nitrous oxide in the Sanggou Bay[D]. Qingdao: Ocean University of China, 2015. | |
[48] | 李霞. 新村湾水体中CH4和N2O的产生、释放及影响因素研究[D]. 三亚: 海南热带海洋学院, 2022. |
LI X. Study on the generation, release and influencing factors of CH4 and N2O in Xincun Bay[D]. Sanya: Hainan Tropical Ocean University, 2022. | |
[49] | 王岚, 张桂玲, 孙明爽, 等. 春、夏季长江口及其邻近海域溶解N2O的分布和海-气交换通量[J]. 环境科学, 2014, 35(12):4502-4510. |
WANG L, ZHANG G L, SUN M S, et al. Distributions and air-sea fluxes of dissolved nitrous oxide in the Yangtze River Estuary and its adjacent marine area in spring and summer[J]. Environmental Science, 2014, 35(12): 4502-4510. | |
[50] | LIN H, DAI M H, KAO S J, et al. Spatiotemporal variability of nitrous oxide in a large eutrophic estuarine system: The Pearl River Estuary, China[J]. Marine Chemistry, 2016, 182: 14-24. |
[51] | 陈露, 欧光南, 何碧烟. 九龙江口水体中N2O的产生、释放和输出[J]. 海洋环境科学, 2023, 42(6):841-852. |
CHEN L, OU G N, HE B Y. Production, emission and export of nitrous oxide from the Jiulong river estuary[J]. Marine Environmental Science, 2023, 42(6): 841-852. | |
[52] | LISS P S, MERLIVAT L. Air-sea gas exchange rates: Introduction and synthesis[M]//BUAT-MÉNARD P. The role of air-sea exchange in geochemical cycling. Dordrecht: Springer, 1986: 113-127. |
[53] | WANNINKHOF R. Relationship between wind speed and gas exchange over the ocean[J]. Journal of Geophysical Research: Oceans, 1992, 97(C5): 7373-7382. |
[54] | RAYMOND P A, COLE J J. Gas exchange in rivers and estuaries: Choosing a gas transfer velocity[J]. Estuaries, 2001, 24(2): 312-317. |
[1] | 王智弘, 屈科, 杨元平, 王旭, 高榕泽. 卷积神经网络方法在涌潮水动力特性演变中的应用研究[J]. 海洋学研究, 2024, 42(3): 131-141. |
[2] | 杨斌, 周姣娣, 王希龙, 鲁栋梁, 黄海方, 钟秋平, 亢振军, . 水体磷形态的动态变化机制:以冬季北部湾大风江口为例[J]. 海洋学研究, 2022, 40(3): 109-119. |
[3] | 王希龙, 苏锴骏, 钟强强, 韦龙涛, 杨斌. 广西北部湾北部近海水体中不同形态210Po的分布及地球化学行为[J]. 海洋学研究, 2022, 40(3): 120-131. |
[4] | 梁海萍, 李团结, 梁海燕, 高璐. 海口市风暴潮分布特征与影响因子探析[J]. 海洋学研究, 2022, 40(2): 83-92. |
[5] | 潘存鸿, 潘冬子, 郑君, 陈刚. 台风对钱塘江涌潮影响研究[J]. 海洋学研究, 2020, 38(4): 40-47. |
[6] | 王雁冰, 韩喜彬, 胡智龙, 赵宁, 阳凡林, 葛倩, 许冬, 高金耀. 亚洲大陆边缘海底峡谷的形态、分布及演化进程[J]. 海洋学研究, 2020, 38(4): 48-57. |
[7] | 冯凌旋, 季永兴, 章馨谣, 戴志军. 杭州湾北岸金山咀—龙泉港岸段近岸滩槽冲淤演变分析[J]. 海洋学研究, 2020, 38(3): 92-98. |
[8] | 陈奕君, 张丰, 杜震洪, 刘仁义. 基于DINEOF的静止海洋水色卫星数据重构方法研究[J]. 海洋学研究, 2019, 37(4): 14-23. |
[9] | 李志永, 程文龙, 金建峰, 张玉伦, 黄姿菡. 堤线调整对九溪涌潮景观影响评价研究[J]. 海洋学研究, 2019, 37(3): 79-85. |
[10] | 杨元平, 吴修广, 刘光生, 谢东风, 张芝永. Spoiler自埋技术特点及其在杭州湾海底管道运行情况分析[J]. 海洋学研究, 2016, 34(3): 57-61. |
[11] | 刘光生, 杨元平, 吴修广, 李君. 强潮海湾Spoiler海底管道冲刷机理分析[J]. 海洋学研究, 2016, 34(2): 53-59. |
[12] | 陈阳, 马仁锋, 任丽艳, 李伟芳, 李加林. 海岸带土地发展潜力评价——以杭州湾南岸为例[J]. 海洋学研究, 2016, 34(1): 27-34. |
[13] | 张胜军, 高飞. 第二岛链以东附近海域冬季水文要素特征分析[J]. 海洋学研究, 2015, 33(4): 53-60. |
[14] | 徐国锋, 金余娣, 沈继平. 甬江口海洋倾倒区沉积物中多氯联苯分布特征和生态风险评价[J]. 海洋学研究, 2014, 32(4): 76-82. |
[15] | 杨磊, 李加林, 袁麒翔, 徐谅慧, 卢雪珠, 王明月, 赵斯. 中国南方大陆海岸线时空变迁[J]. 海洋学研究, 2014, 32(3): 42-49. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||