人工智能海浪预报的发展与挑战
陆钰婷(2002—),女,广西壮族自治区桂林市人,主要从事人工智能海浪预报研究,E-mail:luyt33@mail2.sysu.edu.cn。 |
收稿日期: 2023-12-31
修回日期: 2024-04-16
网络出版日期: 2024-11-25
基金资助
青岛海洋科技中心区域海洋动力学与数值模拟功能实验室开放基金(2019B03)
中石化胜利油田分公司科研项目(YG2203)
国家自然科学基金项目(4230200)
Progress and challenges of artificial intelligence wave forecasting
Received date: 2023-12-31
Revised date: 2024-04-16
Online published: 2024-11-25
海浪是海洋中最为重要的现象之一,快速准确的海浪预报对于保障海上生产、生活安全具有重要意义。该文回顾了海浪预报方法的发展历程,包括传统统计预报、数值模式预报以及目前快速发展的人工智能预报。基于人工智能的海浪预报模型表现出计算速度快、预报精度自适应优化等优势,已经开始从研究阶段逐步应用于实际海浪预报业务之中,但同时该方法也存在预报要素有限、极端海况预报值偏低以及预报泛化能力弱的局限。该文根据人工智能海浪预报的特点,提出了人工智能海浪预报目前亟需解决的观测数据高效利用、先验知识引入、人工智能模型安全性与泛化能力提升等关键科学技术问题。
陆钰婷 , 郭文康 , 丁骏 , 王林峰 , 李晓辉 , 王久珂 . 人工智能海浪预报的发展与挑战[J]. 海洋学研究, 2024 , 42(3) : 28 -37 . DOI: 10.3969/j.issn.1001-909X.2024.03.002
Waves are one of the most important phenomena in the ocean. The accurate and quick updated wave forecasting is of crucial significance for ensuring marine activities safety. The development of wave forecast is presented, including the traditional statistical wave forecasting methods, numerical wave prediction models, and the rapidly developing artificial intelligence (AI) wave forecasting methods. Currently, AI wave forecast models have been demonstrated unique advantages in terms of computational efficiency and adaptive forecasting accuracy, and they are gradually being applied in practical wave forecasting operations, transitioning from the research stage. However, they also have limitations, including limited forecasting elements, underestimation of extreme wave conditions, and weak forecasting generalization ability. Based on the characteristics of AI wave prediction, key scientific and technological issues that need to be addressed in current AI wave forecasting are proposed. These include efficient utilization of observational data, incorporation of prior physical knowledge, and enhancement of AI model safety and generalization ability.
[1] |
管长龙. 我国海浪理论及预报研究的回顾与展望[J]. 青岛海洋大学学报, 2000, 30(4):549-556.
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
屈远, 高志一, 蔡靖泽, 等. 数值模型和智能模型的海浪预报能力比较[J]. 海洋预报, 2022, 39(5):17-26.
|
[14] |
|
[15] |
许富祥, 许林之. 海浪预报方法综述(一)[J]. 海洋预报, 1989(3):33-43.
|
[16] |
|
[17] |
文圣常. 普遍风浪谱及其应用[J]. 山东海洋学院学报, 1960:15-43.
|
[18] |
|
[19] |
文圣常. 我在海浪理论及应用领域的研究工作[J]. 中国科学院院刊, 1996(2):61.
|
[20] |
汪炳祥. 新型风浪谱及其应用[J]. 海洋与湖沼, 1962(Z2):142-160.
|
[21] |
汪炳祥. 风浪谱的形式的再探讨[J]. 海洋与湖沼, 1964(1): 23-37.
|
[22] |
|
[23] |
|
[24] |
|
[25] |
关孟儒. 台风波浪推算方法的探讨[J]. 华东水利学院学报, 1981(2):17-36.
|
[26] |
SWAMP Group. Wave dynamics (Book reviews: Ocean wave modeling)[J]. Science, 1985, 229.DOI:10.1126/science.229.4711.377.
|
[27] |
|
[28] |
WAMDI Group. The WAM model—a third generation ocean wave prediction model[J]. Journal of Physical Oceanography, 1988, 18(12): 1775-1810.
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
许立兵, 王安喜, 汪纯阳, 等. 基于机器学习的海洋环境预报订正方法研究[J]. 海洋通报, 2020, 39(6): 695-704.
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
[67] |
|
[68] |
|
[69] |
|
[70] |
|
[71] |
|
[72] |
|
[73] |
|
[74] |
张新宇, 石爱国, 周波, 等. 一种海浪谱预报的新模式[J]. 中国航海, 2015, 38(2):118-121.
|
[75] |
|
[76] |
|
/
〈 |
|
〉 |