Journal of Marine Sciences ›› 2023, Vol. 41 ›› Issue (1): 82-95.DOI: 10.3969-j.issn.1001-909X.2023.01.007
Previous Articles Next Articles
LIU Tingyu1(), BAI Yan1,2,*(), ZHU Bozhong1,2, LI Teng1, GONG Fang1
Received:
2022-12-27
Revised:
2023-02-01
Online:
2023-03-15
Published:
2023-04-28
CLC Number:
LIU Tingyu, BAI Yan, ZHU Bozhong, LI Teng, GONG Fang. Satellite retrieval algorithm of high spatial resolution sea surface partial pressure of CO2: Application of machine learning in Xiangshan Bay in autumn[J]. Journal of Marine Sciences, 2023, 41(1): 82-95.
Add to citation manager EndNote|Ris|BibTeX
URL: http://hyxyj.sio.org.cn/EN/10.3969-j.issn.1001-909X.2023.01.007
Fig.1 The study area, cruise tracks and sampling stations (Red triangles represent the location of sampling stations; red starsrepresent the position of the tide gauging stations; black dots represent the location of the pCO2 extremums.)
Landsat-8 OLI | Sentinel-2 MSI | |||||||
---|---|---|---|---|---|---|---|---|
波段序号 | 波段信息 | 波长/nm | 空间分辨率/m | 波段序号 | 波段信息 | 波长/nm | 空间分辨率/m | |
Band1 | 气溶胶 | 430~450 | 30 | Band1 | 气溶胶 | 433~453 | 60 | |
Band2 | 蓝光 | 450~515 | 30 | Band2 | 蓝光 | 458~523 | 10 | |
Band3 | 绿光 | 525~600 | 30 | Band3 | 绿光 | 543~578 | 10 | |
Band4 | 红光 | 630~680 | 30 | Band4 | 红光 | 650~680 | 10 | |
Band5 | 植被红边 | 698~713 | 20 | |||||
Band6 | 植被红边 | 733~748 | 20 | |||||
Band7 | 植被红边 | 773~793 | 20 | |||||
Band5 | 近红外 | 845~885 | 30 | Band8 | 近红外 | 785~900 | 10 | |
Band8a | 植被红边 | 855~875 | 20 | |||||
Band9 | 水蒸气 | 935~955 | 60 | |||||
Band6 | 短波红外 | 1 560~1 660 | 30 | Band10 | 短波红外 | 1 360~1 390 | 20 | |
Band7 | 短波红外 | 2 100~2 300 | 30 | Band11 | 短波红外 | 1 565~1 655 | 20 | |
Band8 | 全色波段 | 503~676 | 15 | Band12 | 短波红外 | 2 100~2 280 | 20 |
Tab.1 Band informations of Sentinel-2 MSI and Landsat-8 OLI sensor
Landsat-8 OLI | Sentinel-2 MSI | |||||||
---|---|---|---|---|---|---|---|---|
波段序号 | 波段信息 | 波长/nm | 空间分辨率/m | 波段序号 | 波段信息 | 波长/nm | 空间分辨率/m | |
Band1 | 气溶胶 | 430~450 | 30 | Band1 | 气溶胶 | 433~453 | 60 | |
Band2 | 蓝光 | 450~515 | 30 | Band2 | 蓝光 | 458~523 | 10 | |
Band3 | 绿光 | 525~600 | 30 | Band3 | 绿光 | 543~578 | 10 | |
Band4 | 红光 | 630~680 | 30 | Band4 | 红光 | 650~680 | 10 | |
Band5 | 植被红边 | 698~713 | 20 | |||||
Band6 | 植被红边 | 733~748 | 20 | |||||
Band7 | 植被红边 | 773~793 | 20 | |||||
Band5 | 近红外 | 845~885 | 30 | Band8 | 近红外 | 785~900 | 10 | |
Band8a | 植被红边 | 855~875 | 20 | |||||
Band9 | 水蒸气 | 935~955 | 60 | |||||
Band6 | 短波红外 | 1 560~1 660 | 30 | Band10 | 短波红外 | 1 360~1 390 | 20 | |
Band7 | 短波红外 | 2 100~2 300 | 30 | Band11 | 短波红外 | 1 565~1 655 | 20 | |
Band8 | 全色波段 | 503~676 | 15 | Band12 | 短波红外 | 2 100~2 280 | 20 |
Fig.2 Curve of in situ remote sensing reflectance of eleven stations in Xiangshan Bay (The pink rectangular areas represent the range of 8 bands of Sentinel-2 MSI, with band numbers at the top of the figure, and the solid dots represent the center wavelengths of each band.)
Fig.4 Algorithm validation result (Fig.4a and fig.4b are modeling and validation results of the SVM training and validation dataset. The black straight line is the 1∶1 line; The orange line is the overall fitted curve. Fig.4c and fig.4d are pCO2 results of in situ measurement (Nov. 10, 2021) and satellite retrieval (Nov. 11, 2021), respectively. Fig.4e is the comparison between in situ pCO2 and satellite-derived pCO2 at corresponding longitude.)
Fig.5 Spatial distribution of Sentinel-2 MSI satellite-derived pCO2 (a, c, e, g, i, k) and Landsat-8 OLI SST (b, d, f, h, j, l) of adjacent time in Xiangshan Bay in autumn 2017-2021 (Red lightning represents the location of Datang power Plant.)
Fig.6 Spatial distribution of satellite-derived pCO2 in Xiangshan Bay in autumn 2017-2021 (Red lightning represents the location of Datang power Plant.)
Fig.7 Spatial distribution of underway measured parameters and their correlations with pCO2 in Xiangshan Bay in Nov. 10, 2021 (Fig.7a, fig.7c and fig.7e are the spatial distribution of SST, salinity and dissolved oxygen saturation, respectively. Fig.7b is the correlation between pCO2 and SST and the red and blue dots represent the data closest to the mouth and top of the bay. Fig.7d and fig.7f are the correlation between NpCO2 and salinity and dissolved oxygen saturation. The black straight lines are the fitting curves of total data, and the red dashed line is the fitting curve with the data in circles removed.)
[1] |
FRIEDLINGSTEIN P, O’SULLIVAN M, JONES M W, et al. Global carbon budget 2022[J]. Earth System Science Data, 2022, 14: 4811-4900.
DOI URL |
[2] |
GRUBER N. Carbon at the coastal interface[J]. Nature, 2015, 517: 148-149.
DOI |
[3] |
LOHRENZ S E, CAI W J, CHAKRABORTY S, et al. Satellite estimation of coastal pCO2 and air-sea flux of carbon dioxide in the northern Gulf of Mexico[J]. Remote Sensing of Environment, 2018, 207: 71-83.
DOI URL |
[4] |
ETCHETO J, DANDONNEAU Y, BOUTIN J. Estimating the interannual variability of the air-sea CO2 flux in the east equatorial Pacific[J]. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 1999, 24(5): 405-410.
DOI URL |
[5] |
ONO T, SAINO T, KURITA N, et al. Basin-scale extrapo-lation of shipboard pCO2 data by using satellite SST and Chl a[J]. International Journal of Remote Sensing, 2004, 25(19): 3803-3815.
DOI URL |
[6] | LOHRENZ S E, CAI W J. Satellite ocean color assessment of air-sea fluxes of CO2 in a river-dominated coastal margin[J]. Geophysical Research Letters, 2006, 33(1): L01601. |
[7] |
JOSHI I D, WARD N D, D’SA E J, et al. Seasonal trends in surface pCO2 and air-sea CO2 fluxes in Apalachicola Bay, Florida, from VIIRS ocean color[J]. Journal of Geophysical Research: Biogeosciences, 2018, 123(8): 2466-2484.
DOI URL |
[8] |
TELSZEWSKI M, CHAZOTTES A, SCHUSTER U, et al. Estimating the monthly pCO2 distribution in the North Atlantic using a self-organizing neural network[J]. Biogeosciences, 2009, 6(8): 1405-1421.
DOI URL |
[9] |
BAI Y, CAI W J, HE X Q, et al. A mechanistic semi-analytical method for remotely sensing sea surface pCO2 river-dominated coastal oceans: A case study from the East China Sea[J]. Journal of Geophysical Research: Oceans, 2015, 120(3): 2331-2349.
DOI URL |
[10] |
吕航宇, 白雁, 李骞, 等. 夏季珠江口海域海水CO2分压的卫星遥感反演[J]. 海洋学研究, 2018, 36(2):1-11.
DOI |
LÜ H Y, BAI Y, LI Q, et al. Satellite remote sensing retrieval of aquatic pCO2 in summer in the Pearl River Estuary[J]. Journal of Marine Sciences, 2018, 36(2): 1-11. | |
[11] |
SONG X L, BAI Y, CAI W J, et al. Remote sensing of sea surface pCO2 in the Bering Sea in summer based on a mechanistic semi-analytical algorithm (MeSAA)[J]. Remote Sensing, 2016, 8(7): 558.
DOI URL |
[12] |
LE C F, GAO Y Y, CAI W J, et al. Estimating summer sea surface pCO2 on a river-dominated continental shelf using a satellite-based semi-mechanistic model[J]. Remote Sensing of Environment, 2019, 225: 115-126.
DOI URL |
[13] |
XU P, MAO X Y, JIANG W S. Mapping tidal residual circulations in the outer Xiangshan Bay using a numerical model[J]. Journal of Marine Systems, 2016, 154: 181-191.
DOI URL |
[14] | 吴凡杰, 吴钢锋, 董平, 等. 基于三维水动力水质数值模型的象山港排污策略研究[J]. 海洋环境科学, 2021, 40(1):24-33. |
WU F J, WU G F, DONG P, et al. An investigation of the pollutants discharge control strategies in Xiangshan Bay based on 3D hydrodynamic and water quality numerical modelling[J]. Marine Environmental Science, 2021, 40(1): 24-33. | |
[15] |
张健, 李佳芮, 刘书明, 等. 象山港生态系统脆弱性及其评价体系构建[J]. 海洋学研究, 2017, 35(2):74-81.
DOI |
ZHANG J, LI J R, LIU S M, et al. The vulnerability of ecosystem and evaluation system construction of Xiangshangang Bay[J]. Journal of Marine Sciences, 2017, 35(2): 74-81.
DOI |
|
[16] |
陈华伟, 吴卫飞. 象山港内新增网箱养殖污染物对海水水质的影响预测[J]. 渔业研究, 2021, 43(2):183-192.
DOI |
CHEN H W, WU W F. Prediction of the influence of new cage culture pollutants on the seawater quality in Xiangshan Harbor[J]. Journal of Fisheries Research, 2021, 43(2): 183-192. | |
[17] | 钱茹茹. 2001—2020年宁波近岸海域赤潮灾害特征分析[J]. 江苏海洋大学学报:自然科学版, 2022, 31(3):11-17. |
QIAN R R. Analysis on the characteristics of red tide disaster in Ningbo coastal waters from 2001 to 2020[J]. Journal of Jiangsu Ocean University: Natural Science Edition, 2022, 31(3): 11-17. | |
[18] |
BAI Y, PAN D L, CAI W J, et al. Remote sensing of salinity from satellite-derived CDOM in the Changjiang River dominated East China Sea[J]. Journal of Geophysical Research: Oceans, 2013, 118(1): 227-243.
DOI URL |
[19] |
WEISS R F. Carbon dioxide in water and seawater: The solubility of a non-ideal gas[J]. Marine Chemistry, 1974, 2(3): 203-215.
DOI URL |
[20] | TAKAHASHI T, OLAFSSON J, GODDARD J G, et al. Seasonal variation of CO2 and nutrients in the high-latitude surface oceans: A comparative study[J]. Global Biogeo-chemical Cycles, 1993, 7(4): 843-878. |
[21] | 国家海洋局. 海洋调查规范第4部分:海水化学要素调查: GB/T 12763.4—2007[S]. 2007. |
State Oceanic Administration. Specifications for oceanographic survey—Part 4: Survey of chemical parameters in sea water: GB/T 12763.4—2007[S]. 2007. | |
[22] | 陈楚群, 潘志林, 施平. 海水光谱模拟及其在黄色物质遥感反演中的应用[J]. 热带海洋学报, 2003, 22(5):33-39. |
CHEN C Q, PAN Z L, SHI P. Simulation of sea water reflectance and its application in retrieval of yellow substance by remote sensing data[J]. Journal of Tropical Oceanography, 2003, 22(5): 33-39. | |
[23] |
LI T, ZHU B Z, CAO F, et al. Monitoring changes in the transparency of the largest reservoir in Eastern China in the past decade, 2013-2020[J]. Remote Sensing, 2021, 13(13): 2570.
DOI URL |
[24] | WANG X Y, ZHONG Y X. Statistical learning theory and state of the art in SVM[C]// Proceedings of the second IEEE International Conference on Cognitive Informatics, 2003: 55-59. |
[25] |
YANG K, YU Z Y, LUO Y, et al. Spatial and temporal variations in the relationship between lake water surface temperatures and water quality-A case study of Dianchi Lake[J]. Science of the Total Environment, 2018, 624: 859-871.
DOI URL |
[26] | KIM Y H, IM J, HA H K, et al. Machine learning approaches to coastal water quality monitoring using GOCI satellite data[J]. GIScience & Remote Sensing, 2014, 51(2): 158-174. |
[27] | FRIEDRICH T, OSCHLIES A. Neural network-based estimates of North Atlantic surface pCO2 from satellite data: A methodological study[J]. Journal of Geophysical Research, 2009, 114(C3): C03020. |
[28] | 黄菊, 高郭平, 程天宇, 等. 2015年冬季南黄海水文特征及海-气CO2通量分析[J]. 上海海洋大学学报, 2017, 26(5):757-765. |
HUANG J, GAO G P, CHENG T Y, et al. Hydrological features and air-sea CO2 fluxes of the Southern Yellow Sea in the winter of 2015[J]. Journal of Shanghai Ocean University, 2017, 26(5): 757-765. | |
[29] |
SHIM J, KIM D, KANG Y C, et al. Seasonal variations in pCO2 and its controlling factors in surface seawater of the northern East China Sea[J]. Continental Shelf Research, 2007, 27(20): 2623-2636.
DOI URL |
[30] | 张龙军. 东海海-气界面CO2通量研究[D]. 青岛: 中国海洋大学, 2003. |
ZHANG L J. The study on the CO2 flux at the sea-air interface over the East China Sea[D]. Qingdao: Ocean University of China, 2003. | |
[31] | 石晓勇, 陆茸, 张传松, 等. 长江口邻近海域溶解氧分布特征及主要影响因素[J]. 中国海洋大学学报:自然科学版, 2006, 36(2):287-290,294. |
SHI X Y, LU R, ZHANG C S, et al. Distribution and main influence factors process of dissolved oxygen in the adjacent area of the Changjiang Estuary in autumn[J]. Periodical of Ocean University of China, 2006, 36(2): 287-290, 294. |
[1] | LIAO Hong-fang, ZHENG Zhong-ming, REGAN Nicholaus, ZHU Jin-yong. Study on nutrient fluxes of sediment-water interface in cage culture zone of large yellow croaker Pseudosciaena crocea in Xiangshan Bay [J]. Journal of Marine Sciences, 2016, 34(1): 84-92. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||