Mangroves, coastal salt marshes and seagrass beds, as the typical coastal blue carbon ecosystems, have been widely recognized for their remarkable capacity in carbon storage. Vegetation carbon pool and sediment (or soil) carbon pool were considered to be the major carbon pools within the coastal blue ecosystems and their variations determined the overall carbon sequestration of the ecosystems. From a perspective of carbon pool interactions, this study summarized the previous research work based on literature review, including the interactions within various vegetation carbon pools and within various sediment carbon pools, as well as the interactions between vegetation and sediment carbon pools. Interspecific competition, allochthonous carbon input and biogeomorphology were found to be the key to understand the carbon pool interactions. Finally, a perspective on the current state-of-the-art of blue carbon pool study is offered, with challenges and suggestions for future directions.
Artificial intelligence in oceanography has demonstrated a great potential with the explosive growth of ocean observation data and numerical model products. This article first reviews the history of ocean big data development, and then introduces in detail the current status of artificial intelligence in oceanography applications including identifying ocean phenomenon, forecasting ocean variables and phenomenon, estimating dynamic parameters, correcting forecast errors, and solving dynamic equations. Specifically, this article elaborates the research on the intelligent identification of ocean eddies, internal waves and sea ice, the intelligent prediction of sea surface temperatures, El Ni?o-Southern Oscillation, storm surges, waves and currents, the intelligent estimation of ocean turbulence parameterization for numerical models, and the intelligent correction of waves and current forecast errors. In addition, it discusses the recent progress of applying physical mechanism fusion and Fourier neural operator for solving ocean dynamic equations. This article is based on the current status of artificial intelligence in oceanography and aims to provide a comprehensive demonstration of the advantages and potential of applying artificial intelligence methods in the field of oceanography. With the two emerging research hotspots: digital twin oceans and artificial intelligence large models, the future development direction of artificial intelligence provides enlightenment and reference for interested scientists and researchers.
Based on the sea surface wind data at 10 m during 1979 to 2018 from European Center for MediumRange Weather Forecasts (ECMWF), the Growing Hierarchical Self-Organizing Map (GHSOM) method were used to analyze the seasonal variation and interannual anomaly variation characteristics of near-surface wind field over the South China Sea (SCS). Four feature patterns are extracted in the first-layer GHSOM from original wind field data, which highly summarize the seasonal variation characteristics, and the second-layer results reveal the monthly variation characteristics. Four anomaly feature patterns also are extracted in the first-layer GHSOM network and they are anticyclonic wind anomaly, cyclonic wind anomaly, southwest wind anomaly and northeast wind anomaly patterns, respectively. Anticyclonic and cyclonic wind anomaly patterns are closely related to ENSO events with time lags by three months and five months comparing with Niño3.4 index. Anticyclonic and cyclonic wind anomalies also show asymmetry, that is, the amplitude of anticyclonic wind anomaly is obviously larger than that of cyclonic wind anomaly. The occurrence frequency of the northeast wind anomaly pattern is greater than that of the southwest wind anomaly pattern. The more SOM patterns in the second layer expose particulars of anomaly wind.