Artificial intelligence in oceanography has demonstrated a great potential with the explosive growth of ocean observation data and numerical model products. This article first reviews the history of ocean big data development, and then introduces in detail the current status of artificial intelligence in oceanography applications including identifying ocean phenomenon, forecasting ocean variables and phenomenon, estimating dynamic parameters, correcting forecast errors, and solving dynamic equations. Specifically, this article elaborates the research on the intelligent identification of ocean eddies, internal waves and sea ice, the intelligent prediction of sea surface temperatures, El Ni?o-Southern Oscillation, storm surges, waves and currents, the intelligent estimation of ocean turbulence parameterization for numerical models, and the intelligent correction of waves and current forecast errors. In addition, it discusses the recent progress of applying physical mechanism fusion and Fourier neural operator for solving ocean dynamic equations. This article is based on the current status of artificial intelligence in oceanography and aims to provide a comprehensive demonstration of the advantages and potential of applying artificial intelligence methods in the field of oceanography. With the two emerging research hotspots: digital twin oceans and artificial intelligence large models, the future development direction of artificial intelligence provides enlightenment and reference for interested scientists and researchers.
Mangroves, coastal salt marshes and seagrass beds, as the typical coastal blue carbon ecosystems, have been widely recognized for their remarkable capacity in carbon storage. Vegetation carbon pool and sediment (or soil) carbon pool were considered to be the major carbon pools within the coastal blue ecosystems and their variations determined the overall carbon sequestration of the ecosystems. From a perspective of carbon pool interactions, this study summarized the previous research work based on literature review, including the interactions within various vegetation carbon pools and within various sediment carbon pools, as well as the interactions between vegetation and sediment carbon pools. Interspecific competition, allochthonous carbon input and biogeomorphology were found to be the key to understand the carbon pool interactions. Finally, a perspective on the current state-of-the-art of blue carbon pool study is offered, with challenges and suggestions for future directions.
Based on the mesoscale atmospheric model WRF and the regional ocean model ROMS, a two-way coupled WRF-ROMS air-sea model was constructed to simulate the super typhoon Mangkhut in 2018. The results showed that the simulation results of the coupled air-sea model were better than those of the only atmospheric or ocean model, and the error of the typhoon track obtained from the coupled model was within 60 km, which was in good agreement with the best track. Compared with the observation results, the simulation results of wind speed and sea level pressure in the coupled model were better than others model. Based on the simulation results of the coupled air-sea model, the spatial and temporal distribution of the wind field, pressure field, sea surface flow field, and storm surge under the super typhoon Mangkhut were further analyzed. The results showed that: (1) In terms of spatial distribution, after the typhoon entered the South China Sea, the radius of the seven-level wind circle was larger behind the right side of the typhoon; the cyclonic flow field showed a significant Ekman effect with the typhoon wind field, and the flow direction was 45° from the wind direction. The wind field, pressure field, wind-generated flow field and water gain distribution all had obvious asymmetry, and the typhoon intensity, flow velocity and water gain were greater on the right side of the typhoon path than on the left side. (2) In terms of time distribution, the distribution of the wind field and the pressure field were similar and synchronized with the typhoon center, while the wind-driven flow field and storm surge were three hours behind the typhoon track.
The foot of the continental slope is an important topographical feature of the continental margin. Its the basis for coastal states to extend its continental shelf rights and to delimit the outer limit of the continental shelf beyond 200 nautical miles. Its also an important technical parameter that the Commission on the Limits of the Continental Shelf pays special attention to when considering the submissions of coastal states. The formulation of the continental shelf regime in Article 76 of the United Nations Convention on the Law of the Sea originates from the typical passive continental margin. However, due to the diversity and complexity of the global continental margin, especially the transformation and influence of late tectonic activities and sedimentation on the continental margin, the seabed topography is extremely complex and changeable, which makes it very difficult to identify the foot of the continental slope. In addition, in order to obtain the largest extent of the outer continental shelf, each coastal state has interpreted the relevant provisions of the foot of the continental slope in their own favor, making the foot of the continental slope a hot and controversial issue in the delimitation of the outer continental shelf. Based on the provisions of the United Nations Convention on the Law of the Sea and the "Scientific and Technical Guidelines of the Commission on the Limits of the Continental Shelf" on the foot of the continental slope, combined with the geological characteristics of different types of continental margins and the delimitation practice of various coastal states, the determination of the base of the continental slope, the selection of the point of greatest change and the application of the evidence to the contrary are discussed.
Carbon stock variation observation forms the basis for coastal saltmarsh blue carbon sink accounting. In order to accurately estimate the carbon sequestration rate of coastal saltmarshes over a short-term scale (seasonal to annual), this study carried out field observations and sample collections within a coastal saltmarsh on the south bank of Hangzhou Bay, covering different seasons of 2022. This study was primarily based on high-resolution surface monitoring by Surface Elevation Table (SET) systems. The results revealed a seasonal plant growth pattern between March and September for both the native species Scirpus mariqueter and the exotic species Spartina alterniflora. In terms of belowground biotic carbon stock changes, over the growing season, the carbon stock increase for Scirpus mariqueter reached 11 g C·m-2 whilst this value was 56 g C·m-2 for Spartina alterniflora. The SET data indicated a sedimentation rate of 13.02 cm·a-1 within the Spartina alterniflora saltmarsh, higher than that of the Scirpus mariqueter saltmarsh, 12.30 cm·a-1. Calculating the sedimentation rate data with sediment bulk density and organic carbon content, the sediment carbon accumulation rate of Scirpus mariqueter saltmarsh was estimated to be 460 g C·m-2·a-1, lower than 588 g C·m-2·a-1 of the Spartina alterniflora saltmarsh. Combining the biotic carbon stock increase and sediment carbon stock increase, the carbon sequestration rate for the Spartina alterniflora saltmarsh was found to be 644 g C·m-2·a-1, higher than the value of Scirpus mariqueter saltmarsh, 471 g C·m-2·a-1. Thus, the difference in carbon sequestration abilities of native and exotic species should be considered for future coastal blue carbon management.
Costal ocean receives a bunch of carbon materials and nutrients from terrestrial sources, relates a lot of carbon-involving interactions. Meanwhile, it is normal that sedimentary reservoir-cap systems with good trap conditions beneath coastal ocean, these entrapments have potentials to storage CO2. This review focuses on the coastal ocean as the research object, and introduces the carbon cycle processes in coastal ocean, their factors which could influence CO2 fluxes in the carbon cycle processes, and the potential carbon storage mechanisms of the coastal marine sedimentary basins. From the perspective of “carbon peaking and carbon neutrality”, the significance of coastal oceans for “Ocean Negative Carbon Emission (ONCE)”, its potential promotion paths, carbon storage potentials in sedimentary basins and the problems faced by coastal oceans are discussed. Overall, the costal ocean is one of the important blue carbon sink areas. In the coastal marine seawater system, improving the reaction efficiency of microbial carbon pump and carbonate carbon pump have positive significance for CO2 negative emissions; The suitable reservoir-cap systems for CO2 storage beneath coastal ocean can not only provide extra spaces, but also guarantee the safety for CO2 storage. In the future, the main research directions should be to inhibit the conversion process of carbon materials to CO2 in coastal oceans and ensure the safety of CO2 storage in sedimentary reservoirs, these could provide theoretical basis and technical guarantee for CO2 negative emissions.