Detection and flux estimation of hydrothermal plumes in the Longqi hydrothermal field in the Southwest Indian Ocean

CHEN Xiao-dan , LIANG Chu-jin, DONG Chang-ming

Journal of Marine Sciences ›› 2015, Vol. 33 ›› Issue (4) : 43-52.

PDF(3240 KB)
PDF(3240 KB)
Journal of Marine Sciences ›› 2015, Vol. 33 ›› Issue (4) : 43-52. DOI: 10.3969/j.issn.1001-909X.2015.04.005

Detection and flux estimation of hydrothermal plumes in the Longqi hydrothermal field in the Southwest Indian Ocean

  • CHEN Xiao-dan 1,2, LIANG Chu-jin *1,2, DONG Chang-ming 3,4
Author information +
History +

Abstract

Compared with the surrounding seawater, hydrothermal fluid has big differences in both physical and chemical characteristics. Detecting abnormal temperature and turbidity are important means for finding hydrothermal plumes signal. The towing CTD and the turbidity data from leg 20 and the CTD station data from leg 21 of “DaYang Yi Hao” expedition ship were studied. A neutral buoyancy level at the depth of 2 550~2 650 meters with a temperature anomaly about 0.01 degree, and the thickness about 100 meters is found in a hydrothermal field at 49.65°E in the Southwest Indian Ocean. It also shows that temperature anomaly appears at the depth of 2 750~2 800 meters, with the maximum value to 0.08 degree. Accompanied by temperature anomaly, turbidity anomaly also occurres at the same water levels. The potential temperature of background water shows a linear correlation with the potential density in the deep sea. In addition, it is estimated that the initial buoyancy flux is 8.78×10-4 m4/s3, and the estimation value of the hydrothermal area heat flux is about 130±43 MW calculated from the neutral buoyancy level.

Key words

Southwest Indian Ocean / hydrothermal plumes / temperature anomaly / turbidity anomaly / heat flux

Cite this article

Download Citations
CHEN Xiao-dan , LIANG Chu-jin, DONG Chang-ming. Detection and flux estimation of hydrothermal plumes in the Longqi hydrothermal field in the Southwest Indian Ocean[J]. Journal of Marine Sciences. 2015, 33(4): 43-52 https://doi.org/10.3969/j.issn.1001-909X.2015.04.005

References

[1] JI Min. The analysis of the environmental characters of modern marine hydrothermal activity regions[D]. Qingdao: Ocean University of China,2004.
季敏.现代海底典型热液活动区环境特征分析[D].青岛:中国海洋大学,2004.
[2] SWALLOW J C, CREASE J. Hot salty water at the bottom of the Red Sea[J]. Nature,1965,205(4967):165-166.
[3] MILLER A R, DENSMORE C D, DEGENS E T, et al. Hot brines and recent iron deposits in deeps of the Red Sea[J]. Geochimica et Cosmochimica Acta,1966,30(3):341-359.
[4] LUPTON J E, DELANEY J R, JOHNSON H P, et al. Entrainment and vertical transport of deep-ocean water by buoyant hydrothermal plumes[J]. Nature,1985,316(6029):621-623.
[5] YANG Zuo-sheng, FAN De-jiang, LI Yun-hai, et al. Advances in hydrothermal plumes study[J]. Advances in Earth Science,2006,21(10):999-1 007.
杨作升,范德江,李云海,等.热液羽状流研究进展[J].地球科学进展,2006,21(10):999-1 007.
[6] LUAN Xi-wu, ZHAO Yi-yang, QIN Yun-shan. A study on shape of hydrothermal plume[J]. Journal of Tropical Oceanography,2002,21(2):91-97.
栾锡武,赵一阳,秦蕴珊.热液柱的形态研究[J].热带海洋学报,2002,21(2):91-97.
[7] XIA Jian-xin, LI Chang, MA Yan-fang. Deep-sea hydrothermal activity: a hot research topic[J]. Journal of Geomechanics,2007,13(2):179-191,118.
夏建新,李畅,马彦芳.深海底热液活动研究热点[J].地质力学学报,2007,13(2):179-191,118.
[8] LOWELL R P,RONA P A,VON HERZEN R P. Seafloor hydrothermal systems[J]. Journal of Geophysical Research: Solid Earth(1978-2012),1995,100(B1):327-352.
[9] ZHAI Shi-kui , WANG Xing-tao, YU Zeng-hui, et al. Heat and mass flux estimation of modern seafloor hydrothermal activity[J]. Acta Oceanologica Sinica,2005,27(2):115-121.
翟世奎,王兴涛,于增慧,等.现代海底热液活动的热和物质通量估算[J].海洋学报,2005,27(2):115-121.
[10] CAO Hong, CAO Zhi-min. Review of submarine hydrothermal activities in Southwest Indian Ridge[J]. Marine Geology and Quaternary Geology,2011,31(1):67-75.
曹红,曹志敏.西南印度洋中脊海底热液活动[J].海洋地质与第四纪地质,2011,31(1):67-75.
[11] ZHANG Tao, GAO Jin-yao. Characters of magmatic activity and tectonics on the ultraslow spreading ridge in Southwest Indian Ocean[J]. Advances in Marine Science,2011,29(3):314-322.
张涛,高金耀.西南印度洋中脊超慢速扩张的构造和岩浆活动特征[J].海洋科学进展,2011,29(3):314-322.
[12] LIN Jin, ZHANG Chuan-lun. The first collaborative China-international cruises to investigate mid-ocean ridge hydrothermal vents[J]. InterRidge News,2006,15:33-34.
[13] TAO Chun-hui, LIN Jian, GUO Shi-qin. Discovery of the first active hydrothermal vent field at the ultraslow spreading Southwest Indian Ridge[J]. InterRidge News,2007,16:25-26.
[14] HUANG Wei, TAO Chun-hui, DENG Xian-ming, et al. Discussion and the scientific significance of IODP drilling to study in the 49°39′E vent field in Southwest Indian Ridge[J]. Journal of Marine Sciences,2009,27(2):97-103.
黄威,陶春辉,邓显明,等.西南印度洋脊49°39′E热液活动区IODP钻探计划的科学意义[J].海洋学研究,2009,27(2):97-103.
[15] TAO Chun-hui, LIN Jian, GUO Shi-qin, et al. First active hydrothermal vents on an ultraslow-spreading center: Southwest Indian Ridge[J]. Geology,2012,40(1):47-50.
[16] TAO Chun-hui, LI Huai-ming, HUANG Wei, et al. Mineralogical and geochemical features of sulfide chimneys from the 49°39′E hydrothermal field on the Southwest Indian Ridge and their geological inferences[J]. Chinese Science Bulletin,2011,56(26):2 828-2 838.
陶春辉,李怀明,黄威,等.西南印度洋脊49°39′E热液区硫化物烟囱体的矿物学和地球化学特征及其地质意义[J].科学通报,2011,56(28-29):2 413-2 423.
[17] LEBLOND P H. Temperature-Salinity analysis of world ocean waters[J]. Journal of the Fisheries Board of Canada,1976,33(6):1 471.
[18] EMERY W J, MEINCKE J. Global water masses-summary and review[J]. Oceanologica Acta,1986,9(4):383-391.
[19] WANG Xiao-yuan, WU Li, ZENG Zhi-gang, et al. Automatic calculation on the temperature anomaly of a marine hydrothermal plume[J]. Acta Oceanologica Sinica,2012,33(2):185-191.
王晓媛,武力,曾志刚,等.海底热液柱温度异常自动化计算方法探讨[J].海洋学报,2012,33(2):185-191.
[20] WANG Ting-ting. Constraints on crustal and lithospheric processes at slow-spreading ridges[D]. Beijing: Peking University,2011.
王婷婷.慢速扩张大洋中脊系统的海洋地壳和岩石圈演化研究[D].北京:北京大学,2011.
[21] MORTON B R, TAYLOR G, TURNER J S. Turbulent gravitational convection from maintained and instantaneous sources[C]// Mathematical and Physical Sciences. Proceedings of the Royal Society of London. Series A,1956,234(1196):1-23.
[22] MIDDLETON J M, THOMSON R E. Modelling the rise of hydrothermal plumes[R]∥Canadian technical report of hydrography and ocean science,1986.
[23] SPEER K G, RONA P A. A model of an Atlantic and Pacific hydrothermal plume[J]. Journal of Geophysical Research: Oceans(1978-2012),1989,94(C5):6 213-6 220.
[24] BAKER E T, MASSOTH G J, FEELY R A. Cataclysmic hydrothermal venting on the Juan de Fuca Ridge[J]. Nature,1987,329(6135):149-151.
[25] BAKER E T, CORMIER M H, LANGMUIR C H, et al. Hydrothermal plumes along segments of contrasting magmatic influence, 15 20′-18 30′ N, East Pacific Rise: Influence of axial faulting[J]. Geochemistry, Geophysics, Geosystems,2001,2(9):doi:10.1029/2000GC000165.
[26] RONA P A, SPEER K G. An Atlantic hydrothermal plume: Trans-Atlantic geotraverse (TAG) area, Mid-Atlantic Ridge crest near 26° N[J]. Journal of Geophysical Research: Solid Earth (1978-2012),1989,94(B10):13 879-13 893.
[27] TURNER J S. Buoyancy effects in fluids[M]. Cambridge:Cambridge University Press,1973.
[28] XIA Jian-xin, HAN Ning, REN Hua-tang. Parameters and model analysis for the deep-sea hydrothermal plume[J]. Earth Science Frontiers,2009,16(6):48-54.
夏建新,韩凝,任华堂.深海热液活动环境场参数及模型分析[J].地学前缘,2009,16(6):48-54.
[29] LUAN Xi-wu, ZHAO Yi-yang, QIN Yun-shan, et al. Heat flux estimates from hydrothermal system to the ocean[J]. Acta Oceanologica Sinica,2002,24(6):59-66.
栾锡武,赵一阳,秦蕴珊,等.热液系统输向大洋的热通量估算[J].海洋学报,2002,24(6):59-66.
[30] FISHER A T. Permeability within basaltic oceanic crust [J] .Review s of Geophysical,1998,26(2):143-182.
[31] HUMPHRIS S. Seafloor hydrothermal systems: Physical, biological and geological interactions[M]. Washington DC: American Geophysical Union,1995.
[32] ZHU Jian. A study of hydrothermal plumes in the ocean[D]. Beijing: Peking University,2008.
朱健.大洋中脊热液羽流研究[D].北京:北京大学,2008.
PDF(3240 KB)

Accesses

Citation

Detail

Sections
Recommended

/