Analysis on the track of Typhoon Rammasun into the South China Sea

DONG Hang, JIANG Liang-hong, ZHANG Xiang-ming, ZHOU Lei

Journal of Marine Sciences ›› 2016, Vol. 34 ›› Issue (1) : 1-7.

PDF(1959 KB)
PDF(1959 KB)
Journal of Marine Sciences ›› 2016, Vol. 34 ›› Issue (1) : 1-7. DOI: 10.3969/j.issn.1001-909X.2016.01.001

Analysis on the track of Typhoon Rammasun into the South China Sea

  • DONG Hang1,2, JIANG Liang-hong1,2, ZHANG Xiang-ming1,2, ZHOU Lei*1,2
Author information +
History +

Abstract

Typhoon Rammasun was the strongest typhoon that hit the South China in the past 41 years since 1973. It increased rapidly over the South China Sea (SCS) before the landfall. In early summer, the SCS is warm enough to support the increase of a typhoon in every year. However, the Western Pacific Subtropical High (WPSH) which steers the trajectories of tropical storms in the western Pacific deviates most tropical storms from the SCS. But, recently, the WPSH experiences a westward extension. Analysis shows that WPSH in early summer of 2014 took a more southward and more westward position than it did in the past several decades. As a result, Typhoon Rammasun was guided into the SCS through Philippine, which was an uncommon tropical storm track in July. In the SCS, Typhoon Rammasun was nourished by the warm ocean and became a super typhoon within only 26 hours. As the implication of this study, if the westward extension of WPSH remains and continues, it is reasonable to expect that more tropical storms enter the warm SCS and get intensified in early summer. Consequently, the South China is likely to be more vulnerable to devastating typhoons.

Key words

super typhoon / Rammasun / South China Sea / Western Pacific Subtropical High / South China

Cite this article

Download Citations
DONG Hang, JIANG Liang-hong, ZHANG Xiang-ming, ZHOU Lei. Analysis on the track of Typhoon Rammasun into the South China Sea[J]. Journal of Marine Sciences. 2016, 34(1): 1-7 https://doi.org/10.3969/j.issn.1001-909X.2016.01.001

References

[1] KAPLAN J, DEMARIA M. Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin[J]. Weather and Forecasting,2003,18(6):1 093-1 108.
[2] EMANUEL K, DESAUTELS C, HOLLOWAY C, et al. Environmental control of tropical cyclone intensity[J]. Journal of the Atmospheric Sciences,2004,61(7):843-858.
[3] EMANUEL K A. Thermodynamic control of hurricane intensity[J]. Nature,1999,401(6754):665-669.
[4] WEBSTER P J, HOLLAND G J, CURRY J A, et al. Changes in tropical cyclone number, duration, and intensity in a warming environment[J]. Science,2005,309(5742):1 844-1 846.
[5] WONG M L M, CHAN J C L. Tropical cyclone intensity in vertical wind shear[J]. Journal of the Atmospheric Sciences,2004,61(15):1 859-1 876.
[6] CRAIG G C, GRAY S L. CISK or WISHE as the mechanism for tropical cyclone intensification[J]. Journal of the Atmospheric Sciences,1996,53(23):3 528-3 540.
[7] DEMARIA M. The effect of vertical shear on tropical cyclone intensity change[J]. Journal of the Atmospheric Sciences,1996,53(14):2 076-2 088.
[8] HOUZE R A, CHEN S S, SMULL B F, et al. Hurricane intensity and eyewall replacement[J]. Science,2007,315(5816):1 235-1 239.
[9] CAMARGO S J, SOBEL A H. Western North Pacific tropical cyclone intensity and ENSO[J]. Journal of Climate,2005,18(15):2 996-3 006.
[10] LIN I I, CHEN C-H, PUN I-F, et al. Warm ocean anomaly, air sea fluxes, and the rapid intensification of tropical cyclone Nargis (2008)[J]. Geophysical Research Letters,2009,36(3):L03817.
[11] EMANUEL K A. An air-sea interaction theory for tropical cyclones. 1. Steady-state maintenance[J]. Journal of the Atmospheric Sciences,1986,43(6):585-604.
[12] WU C-C, LEE C-Y, LIN I I. The effect of the ocean eddy on tropical cyclone intensity[J]. Journal of the Atmospheric Sciences,2007,64(10):3 562-3 578.
[13] CHAN J C L, DUAN Y, SHAY L K. Tropical cyclone intensity change from a simple ocean-atmosphere coupled model[J]. Journal of the Atmospheric Sciences,2001,58(2):154-172.
[14] LIN I I, WU C-C, PUN I-F, et al. Upper-ocean thermal structure and the Western North Pacific category 5 typhoons. Part I: ocean features and the category 5 typhoons' intensification[J]. Monthly Weather Review,2008,136(9):3 288-3 306.
[15] CHU J-H, SAMPSON C R, LEVINE A S, et al. The joint typhoon warning center tropical cyclone best-tracks, 1945-2000[R]. Naval Research Laboratory Technical Report, 2002: NRL/MR/7540-02-16,112.
[16] REYNOLDS R W, RAYNER N A, SMITH T M, et al. An improved in situ and satellite SST analysis for climate[J]. Journal of Climate,2002,15(13):1 609-1 625.
[17] YU L, WELLER R A. Objectively analyzed air-sea heat fluxes for the global ice-free oceans (1981-2005)[J]. Bulletin of the American Meteorological Society,2007,88(4):527-539.
[18] HENDON H H, GLICK J. Intraseasonal air-sea interaction in the tropical Indian and Pacific Oceans[J]. Journal of Climate,1997,10(4):647-661.
[19] KUMAR R R, KUMAR B P, SATYANARAYANA A N V, et al. Parameterization of sea surface drag under varying sea state and its dependence on wave age[J]. Natural Hazards,2008,49(2):187-197.
[20] POWELL M D, VICKERY P J, REINHOLD T A. Reduced drag coefficient for high wind speeds in tropical cyclones[J]. Nature,2003,422(6929):279-283.
[21] KALNAY E, KANAMITSU M, KISTLER R, et al. The NCEP/NCAR 40-year reanalysis project[J]. Bulletin of the American Meteorological Society,1996,77(3):436-471.
[22] SHAY L K, GONI G J, BLACK P G. Effects of a warm oceanic feature on Hurricane Opal[J]. Monthly Weather Review,2000,128(5):1 366-1 383.
[23] MARKS F D, SHAY L K. Landfalling tropical cyclones: Forecast problems and associated research opportunities[J]. Bulletin of the American Meteorological Society,1998,79(2):305-323.
[24] HONG X D, CHANG S W, RAMAN S, et al. The interaction between Hurricane Opal (1995) and a warm core ring in the Gulf of Mexico[J]. Monthly Weather Review,2000,128(5):1 347-1 365.
[25] LIN I-I, WU C C, EMANUEL K A, et al. The interaction of Supertyphoon Maemi (2003) with a warm ocean eddy[J]. Monthly Weather Review,2005,133(9):2 635-2 649.
[26] WANG Gui-hua, SU Ji-lan, CHU P C. Mesoscale eddies in the South China Sea observed with altimeter data[J]. Geophysical Research Letters,2003,30(21):2121.
[27] ZHOU T, YU R, ZHANG J, et al. Why the western Pacific subtropical high has extended westward since the late 1970s[J]. Journal of Climate,2009,22(8):2 199-2 215.
[28] SUI C-H, CHUNG P-H, LI T. Interannual and interdecadal variability of the summertime western North Pacific subtropical high[J]. Geophysical Research Letters,2007,34(11):L11701,doi:10.1029/2006GL029204.
[29] LU Ri-yu, DONG Bu-wen. Westward extension of north Pacific subtropical high in summer[J]. Journal of the Meteorological Society of Japan Ser II,2001,79(6):1 229-1 241.
[30] YE Tian-shu, ZHI Rong, ZHAO Jun-hu, et al. The two annual northward jumps of the West Pacific Subtropical High and their relationship with summer rainfall in Eastern China under global warming[J]. Chinese Physics B,2014,23(6):069203-01-10.
[31] SONG Jin-jie, WU Rong-sheng, QUAN Wan-qing, et al. Impact of the subtropical high on the extratropical transition of tropical cyclones over the western North Pacific[J]. Acta Meteorologica Sinica,2013,27(4):476-485.
[32] LEE S S, SEO Y W, HA K J, et al. Impact of the western North Pacific subtropical high on the East Asian monsoon precipitation and the Indian Ocean precipitation in the boreal summertime[J]. Asia-Pacific Journal of Atmospheric Sciences,2013,49(2):171-182.
PDF(1959 KB)

Accesses

Citation

Detail

Sections
Recommended

/