The evaluation of Westerly Wind Bursts in CMIP5 models

KOU Jian-qiao

Journal of Marine Sciences ›› 2018, Vol. 36 ›› Issue (3) : 17-27.

PDF(4995 KB)
PDF(4995 KB)
Journal of Marine Sciences ›› 2018, Vol. 36 ›› Issue (3) : 17-27. DOI: 10.3969/j.issn.1001-909X.2018.03.002

The evaluation of Westerly Wind Bursts in CMIP5 models

  • KOU Jian-qiao1,2
Author information +
History +

Abstract

Equatorial Westerly Wind Bursts (WWBs) are characterized by sudden increase of surface westerlies over the equatorial region. Previous studies showed that the WWBs play a fundamental role in triggering and maintaining the El Niño event. In this thesis, we evaluate the simulation of WWBs in the state-of-the-art models from the Coupled Model Intercomparison Project phase5(CMIP5). Most of the models can reproduce the eastward propagation of WWBs in El Niño years, as occurrences of WWBs are strongly dependent on sea surface temperature in the tropical western-central Pacific. The WWBs generally occurs before the development of El Niño. Unlike what was proposed in previous studies, we found that MJO does not significantly increase the likelihood of WWBs in both observations and model simulations.

Key words

WWBs / tropical Pacific / ENSO / MJO / CMIP5

Cite this article

Download Citations
KOU Jian-qiao. The evaluation of Westerly Wind Bursts in CMIP5 models[J]. Journal of Marine Sciences. 2018, 36(3): 17-27 https://doi.org/10.3969/j.issn.1001-909X.2018.03.002

References

[1] REICHLER T, KIM J. How well do coupled models simulate today's climate[J]. Bull Am Meteorol Soc, 2008, 89(3) : 303-311. doi: 10.1175/BAMS-89-3-303.
[2] PHILIP S, VAN OLDENBORGH G J. Shifts in ENSO coupling processes under global warming[J]. Geophys Res Letter, 2006, 33: L11704. doi: 10.1029/2006GL026196.
[3] VAN OLDENBORGH G J, PHILIP S Y, COLLINS M. El Niño in a changing climate: A multi-model study[J]. Ocean Science, 2005, 1: 81-95.doi:10.5194/os-1-81-2005.
[4] SEIKI A, TAKAYABU Y N. Westerly wind bursts and their relationship with intraseasonal variations and ENSO. Part I: Statistics[J]. Mon Weather Rev, 2007, 135(3): 3 325-3 345. doi:10.1175/MWR3477.1.
[5] SEIKI A, TAKAYABU Y N. Westerly wind bursts and their relationship with intraseasonal variations and ENSO. Part II: Energetics over the western and central Pacific[J]. Mon Weather Rev, 2007, 135(3):3346-3361. doi:10.1175/MWR3503.1.
[6] SEIKI A, TAKAYABU Y N , YONEYAMA K, et al. The oceanic response to the Madden-Julian Oscillation and ENSO[J]. SOLA, 2009, 5(1): 93-96.doi: 10.2151/sola.2009-024.
[7] GUILYARDI E, WITTENBERG A, FEDOROV A, et al. Understanding El Niño inocean-atmosphere general circulation models[J]. American Meteorological Society, 2009, 90: 325-340. doi:10.1175/2008BAMS2387.1.
[8] MADDEN R A, JULIAN P R. Detection of a 40-50 day oscillation in the zonal wind in the tropical Pacific[J]. J Atmos Sci, 1971, 28(5):702-708.
[9] MALONEY E D, HARTMANN D L. Frictional moisture convergence in a composite life cycle of the Madden-Julian oscillation[J]. J Climate, 1998, 11(9): 2 387-2 403. doi:10.1175/1520-0442(1998)011<2387:FMCIAC>2.0.CO;2.
[10] TAYLOR K E, STOUFFER R J, MEEHL G A. An overview of CMIP5 and the experiment design[J]. Bull Amer Meteorol Soc, 2012,93(4):485-498, doi:10.1175/BAMS-D-11-00094.1.
[11] SEIKI A, TAKAYABU Y N, YASUDA T, et al. Westerly wind bursts and their relationship with ENSO in CMIP3 models[J]. J Geophys Res, 2011, 116: D03303. doi:10.1029/2010JD015039.
[12] HARTTEN L M. Synoptic settings of westerly wind bursts[J]. J Geophys Res, 1996, 101(D12) : 16 997-17 019.
[13] MURAKAMI T, SUMATHIPALA W L. Westerly bursts during the 1982/83 ENSO[J]. J Clim, 1989, 2(1): 71-85.
[14] YEH S W, KIRTMAN B P. ENSO amplitude changes due to climate change projections in different coupled models[J]. J Clim, 2007,20(2): 203-217, doi:10.1175/JCLI4001.1.
[15] HARRISON D E, VECCHI G A. Westerly wind events in the tropical Pacific, 1986–95[J]. J Clim, 1997, 10(12): 3 131-3 156.
[16] PUY M, VIALARD J, LENGAIGNE M, et al. Modulation of equatorial Pacific westerly/easterly wind events by the Madden Julian Oscillation and convectively coupled Rossby waves[J]. Climate Dynamics, 2016,46(7-8):2 155-2 178. doi:10.1007/s00382-015-2695-x.
[17] CHEN D, LIAN T, FU C, et al. Strong influence of westerly wind bursts on El Niño diversity[J]. Nature Geoscience, 2015, 8(5).doi:10.1038/ngeo2399.
[18] VECCHI G A,SODEN B J. Global warming and the weakening of the tropical circulation[J]. J Clim,2006, 20(17): 1 529-1 530. doi:10.1175/JCLI4258.1.
[19] OSE T, ARAKAWA O. Characteristics of the CMIP3 models simulating realistic response of tropical western Pacific precipitation to Niño3 SST variability[J]. J Meteorol Soc Jpn, 2009, 87(4): 807-819. doi:10.2151/jmsj.87.807.
[20] VECCHI G A, HARRISON D. Tropical Pacific sea surface temperature anomalies, Niño, and equatorial westerly wind events[J]. J Clim, 2000,13:1 814-1 830.
[21] CHIODI A M, HARRISON D E, VECCHI G A. Subseasonal atmospheric variability and Niño waveguide warming: Observed effects of the Madden-Julian Oscillation and westerly wind events[J]. J Clim, 2014, 27:3 619-3 642.
[22] CHIODI A M, HARRISON D E, VECCHI G A . Subseasonal atmospheric variability and El Niño waveguide warming: Observed effects of the Madden-Julian Oscillation and Westerly Wind Events[J].J Clim,2014,27(10):3 619-3 642. doi: 10.1175/JCLI-D-13-00547.1.
[23] HARRISON D E, VECCHI G A. Effects of surface forcing on the seasonal cycle of the eastern equatorial Pacific[J]. J Mar Res, 2009, 67: 701-729. doi:10.1357/002224009792006179.
[24] LENGAIGNE M E, GUILYARDI J P, BOULANGER C, et al. Triggering of El Niño by westerly wind events in a coupled general circulation model[J]. Climate Dyn, 2004, 23(6): 601-620. doi:10.1007/s00382-004-0457-2.
[25] GUILYARDI E. El Niño-mean state-seasonal cycle interactions in a Multi-model ensemble[J]. Clim Dyn, 2006,26(4): 329-348. doi:10.1007/s00382-005-0084-6.
PDF(4995 KB)

Accesses

Citation

Detail

Sections
Recommended

/