Study on effective resolutions of remotely sensed reanalysis products of sea surface salinity

CHEN Jian, CHENG Rui, LIU Juan, WANG Hui-zan, BAO Sen-liang, YAN Heng-qian

Journal of Marine Sciences ›› 2018, Vol. 36 ›› Issue (4) : 17-27.

PDF(3938 KB)
PDF(3938 KB)
Journal of Marine Sciences ›› 2018, Vol. 36 ›› Issue (4) : 17-27. DOI: 10.3969/j.issn.1001-909X.2018.04.003

Study on effective resolutions of remotely sensed reanalysis products of sea surface salinity

  • CHEN Jian1,2, CHENG Rui1,2, LIU Juan1,2, WANG Hui-zan3, BAO Sen-liang3, YAN Heng-qian3
Author information +
History +

Abstract

The effective resolutions of six remotely sensed reanalysis products of sea surface salinity(SSS) from the soil moisture and ocean salinity (SMOS) and Aquarius/SAC-D missions were studied, in terms of the qualitative map, zonal wavenumber spectra, and root mean square (RMS) error. The mechanisms behind their differences also are studied. It suggests that the CATDS-0.25° reanalysis is unable to capture the small-scale structures in SSS and performs the worst in representing spatial variability in SSS. Its higher spectral energy is mostly a reflection of noises in the tropics while those in regions such as along the western boundary flows are signals. The BEC-L3-0.25° reanalysis, which has small RMS errors, clear salinity maps, and remarkable mesoscale energy, is the best fit for portraying mesoscale (25-100 km) SSS features. The SSS in the BEC-L4-0.25° reanalysis is overly attenuated by its singularity analysis remapping method. The Aquarius-V2-1.00° reanalysis, with an additional smoothing procedure, performs well in depicting large-scale (>100 km) salinity phenomena. The Aquarius-CAP-1.00° reanalysis generates the smallest RMS errors benefiting from its combined active-passive (CAP) algorithm, however, and leads to a somewhat noisy, artificial pattern with unreasonable along-track strips. The CATDS-1.00° reanalysis is roughly equivalent to the Aquarius-V2-1.00° in terms of pattern, energy, and error features.

Key words

SMOS / Aquarius / sea surface salinity / remotely sensed reanalysis product / effective resolution

Cite this article

Download Citations
CHEN Jian, CHENG Rui, LIU Juan, WANG Hui-zan, BAO Sen-liang, YAN Heng-qian. Study on effective resolutions of remotely sensed reanalysis products of sea surface salinity[J]. Journal of Marine Sciences. 2018, 36(4): 17-27 https://doi.org/10.3969/j.issn.1001-909X.2018.04.003

References

[1] KERR Y, WALDTEUFEL P, WIGNERON J P, et al. The SMOS mission: New tool for monitoring key elements of the global water cycle[J]. P IEEE, 2010, 98(5): 666-687.
[2] KERR Y, MECKLENBURG S, DELWART S, et al. SMOS after five years in operations: from tentative research to operational applications[J]. Theor Appl Genet, 2015, 99(1-2): 289-295.
[3] LE-VINE D M, LAGERLOEF G S, TORRUSIO S E. Aquarius and remote sensing of sea surface salinity from space[J]. P IEEE, 2010, 98(5): 688-703.
[4] LE-VINE D M, DINNAT E P, LAGERLOEF G S E, et al. Aquarius: Status and recent results[J]. Radio Sci, 2016, 49(9): 709-720.
[5] DINNAT E P, VINE D M L, PIEPMEIER J R, et al. Aquarius L-band radiometers calibration using cold sky observations[J]. IEEE J-STARS, 2016, 8(12): 5 433-5 449.
[6] PABLOS M, PILES M, GONZÁLEZ-GAMBAU V, et al. SMOS and Aquarius radiometers: inter-comparison over selected targets[J]. IEEE J-STARS, 2014, 7(9): 3 833-3 844.
[7] TORRES F, CORBELLA I, WU L, et al. Minimization of image distortion in SMOS brightness temperature maps over the ocean[J]. IEEE Geosci Remote S, 2011, 9(1): 18-22.
[8] CAMPS A, VALL-LLOSSERA M, BATRES L, et al. Retrieving sea surface salinity with multiangular L-band brightness temperatures: Improvement by spatiotemporal averaging[J]. Radio Sci, 2016, 40(2): 1-13.
[9] HEJAZIN Y, JONES W L, SANTOS-GARCIA A, et al. A roughness correction for Aquarius sea surface salinity using the CONAE microwave radiometer[J]. IEEE J-STARS, 2016, 8(12): 5 500-5 510.
[10] MEISSNER T, WENTZ F, RICCIARDULLI L. The emission and scattering of L-band microwave radiation from rough ocean surfaces and wind speed measurements from the Aquarius sensor[J]. J Geophys Res: Oceans, 2014, 119(8): 6 499-6 522.
[11] YUEH S, TANG W, FORE A, et al. Aquarius geophysical model function and combined active passive algorithm for ocean surface salinity and wind retrieval[J]. J Geophys Res: Oceans, 2014, 119(8): 5 360-5 379.
[12] MELNICHENKO O, HACKER P, MAXIMENKO N, et al. Optimum interpolation analysis of Aquarius sea surface salinity[J]. J Geophys Res: Oceans, 2016, 121(1): 602-616.
[13] XIE P, BOYER T, BAYLER E, et al. An in situ-satellite blended analysis of global sea surface salinity[J]. J Geophys Res: Oceans, 2014, 119(9): 6 140-6 160.
[14] BOUTIN J, MARTIN N, REVERDIN G, et al. Sea surface salinity under rain cells: SMOS satellite and in situ drifters observations[J]. J Geophys Res: Oceans, 2014, 119(8): 5 533-5 545.
[15] DRUCKER R, RISER S C. Validation of Aquarius sea surface salinity with Argo: analysis of error due to depth of measurement and vertical salinity stratification[J]. J Geophys Res: Oceans, 2014, 119(7): 4 626-4 637.
[16] HERNANDEZ O, BOUTIN J, KOLODZIEJCZYK N, et al. SMOS salinity in the subtropical North Atlantic salinity maximum: 1. Comparison with Aquarius and in situ salinity[J]. J Geophys Res: Oceans, 2014, 119(12): 8 878-8 896.
[17] REAGAN J, BOYER T, ANTONOV J, et al. Comparison analysis between Aquarius sea surface salinity and World Ocean Database in situ analyzed sea surface salinity[J]. J Geophys Res: Oceans, 2014, 119(11): 8 122-8 140.
[18] TANG Wen-qing, YUEH S H, FORE A G. A Hayashi Validation of Aquarius sea surface salinity with in situ measurements from Argo floats and moored buoys[J]. J Geophys Res: Oceans, 2014, 119(9): 6171-6189
[19] LAGERLOEF G, KAO H Y, MEISSNER T, et al. Aquarius salinity validation analysis; data version 4.0[R]. 2015. ftp://podaac.jpl.nasa.gov/allData/aquarius/docs/v4/AQ-014-PS-0016 _Aquarius Salinity Data ValidationAnalysis_DatasetVersion4.0 and3.0 .pdf.
[20] MANNSHARDT E, SUCIC K, FUENTES M, et al. Comparison of distributional statistics of Aquarius and Argo sea surface salinity measurements[J]. J Atmos Oceanic Technol, 2015, 33(1): 151117145230002.
[21] LEE T. Consistency of Aquarius sea surface salinity with Argo products on various spatial and temporal scales[J]. Geophys Res Lett, 2016, 43(8): 3 857-3 864.
[22] BHASKAR T U, JAYARAM C. Evaluation of Aquarius sea surface salinity with Argo sea surface salinity in the tropical Indian Ocean[J]. IEEE Geosci Remote S, 2015, 12(6): 1 292-1 296.
[23] TZORTZI E, SROKOSZ M, GOMMENGINGER C, et al. Spatial and temporal scales of variability in tropical Atlantic sea surface salinity from the SMOS and Aquarius satellite missions[J]. Remote Sens Environ, 2016, 180: 418-430.
[24] BINGHAM F M, LEE T. Space and time scales of sea surface salinity and freshwater forcing variability in the global ocean[J]. J Geophys Res: Oceans, 2016, 122(4),doi: 10.1002/2016JC012216.
[25] VINOGRADOVA N T, PONTE R M. Small-scale variability in sea surface salinity and implications for satellite-derived measurements[J]. J Atmos Oceanic Technol, 2013, 30(11): 2 689-2 694.
[26] VINOGRADOVA N T, PONTE R M. Assessing temporal aliasing in satellite-based surface salinity measurements[J]. J Atmos Oceanic Technol, 2012, 29: 1 391-1 400.
[27] JOHNSON J T, ZHANG M. Theoretical study of the small slope approximation for ocean polarimetric thermal emission[J]. IEEE T Geosci Remote, 1999, 37(5): 2 305-2 316.
[28] GUIMBARD S, GOURRION J, PORTABELLA M, et al. SMOS semi-empirical ocean forward model adjustment[J]. IEEE T Geosci Remote, 2012, 50(5): 1 676-1 687.
[29] TURIEL A, NIEVES V, GARCÍA-LADONA E, et al. The multifractal structure of satellite sea surface temperature maps can be used to obtain global maps of streamlines[J]. Ocean Sci, 2009, 5(4): 447-460.
[30] MEISSNER T, WENTZ F, HILBURN K, et al. The Aquarius salinity retrieval algorithm[R]. IGARSS, 2012.
[31] YUEH S, CHAUBELL J. Sea surface salinity and wind retrieval using combined passive and active L-band microwave observations[J]. IEEE T Geosci Remote, 2012, 50(4): 1 022-1 032.
[32] REYNOLDS R W, CHELTON D B. Comparisons of daily sea surface temperature analyses for 2007-08[J]. J Climate, 2010, 23(13): 3 545-3 562.
PDF(3938 KB)

Accesses

Citation

Detail

Sections
Recommended

/