Assessment of the Pacific Equatorial Intermediate Currents in five ocean models outputs based on the observation calculated from Argo trajectories

ZHOU Yongyuan, YAN Yunwei, XING Xiaogang, CHAI Fei

Journal of Marine Sciences ›› 2020, Vol. 38 ›› Issue (3) : 1-9.

PDF(4573 KB)
PDF(4573 KB)
Journal of Marine Sciences ›› 2020, Vol. 38 ›› Issue (3) : 1-9. DOI: 10.3969/j.issn.1001-909X.2020.03.001

Assessment of the Pacific Equatorial Intermediate Currents in five ocean models outputs based on the observation calculated from Argo trajectories

  • ZHOU Yongyuan1,2, YAN Yunwei* 1,2, XING Xiaogang1,2, CHAI Fei1,2,3
Author information +
History +

Abstract

A preliminary assessment of the Pacific Equatorial Intermediate Currents (EICs) in five ocean models outputs (OFES, LICOM, HYCOM, ECCO2 and SODA) were conducted according to the spatial and temporal features using observation data which was calculated from Argo trajectories. The EICs in Argo currents field are mainly composed of the alternating east-west zonal jets. In the east-west direction, the currents are strong in the western but weak in the eastern, in the south-north direction, the currents are strong in the southern but weak in the northern. Besides, there are seasonal variations and the phase of seasonal variations is characterized by westward propagation and meridionally symmetrical on the equator. The assessment results show that SODA is the best dataset in these five models, all the characteristics are almost consistent with the observation. The second is ECCO2, the flow field is almost consistent with the observation except the kinetic energy. Then comes the OFES, LICOM and HYCOM, all of them are able to simulate the structures of the alternating zonal jets.

Key words

tropical Pacific Ocean / mid-depth currents / Argo trajectory / ocean models assessment

Cite this article

Download Citations
ZHOU Yongyuan, YAN Yunwei, XING Xiaogang, CHAI Fei. Assessment of the Pacific Equatorial Intermediate Currents in five ocean models outputs based on the observation calculated from Argo trajectories[J]. Journal of Marine Sciences. 2020, 38(3): 1-9 https://doi.org/10.3969/j.issn.1001-909X.2020.03.001

References

[1] TOURRE Y M, WHITE W B. ENSO signals in global upper-ocean temperature[J]. Journal of Physical Oceanography, 1995, 25(6): 1317-1332.
[2] ASHOK K, YAMAGATA T. Climate change: The El Niño with a difference[J]. Nature, 2009, 461(7263): 481-484.
[3] ALEXANDER M A, BLADÉ I, NEWMAN M, et al. The atmospheric bridge: The influence of ENSO teleconnections on air-sea interaction over the global oceans[J]. Journal of Climate, 2002, 15(16): 2205-2231.
[4] TOOLE J M, ZOU E, MILLARD R C. On the circulation of the upper waters in the western equatorial Pacific Ocean[J]. Deep-Sea Research, Part A, 1988, 35(9): 1451-1482.
[5] HSU A C, XUE H, CHAI F, et al. Variability of the Pacific North Equatorial Current and its implications on Japanese eel (Anguilla japonica) larval migration[J]. Fisheries Oceanography, 2017, 26(3): 251-267.
[6] MARIN F, KESTENARE E, DELCROIX T, et al. Annual reversal of the equatorial intermediate current in the Pacific: observations and model diagnostics[J]. Journal of Physical Oceanography, 2010, 40(5): 915-933.
[7] DIETZE H, LOEPTIEN U. Revisiting “nutrient trapping” in global coupled biogeochemical ocean circulation models[J]. Global Biogeochemical Cycles, 2013, 27(2): 265-284.
[8] DUCET N, TRAON P Y L, REVERDIN G. Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2[J]. Journal of Geophysical Research, 2000, 105(C8): 19477-19498.
[9] MCPHADEN M J, BUSALACCHI A J, CHENEY R, et al. The tropical ocean-global atmosphere observing system: a decade of progress[J]. Journal of Geophysical Research, 1998, 103(C7): 14169-14240.
[10] LAGERLOEF G S E, MITCHUM G T, LUKAS R B, et al. Tropical Pacific near surface current estimated from altimeter, wind, and drifter data[J]. Journal of Geophysical Research: Oceans, 1999, 104(C10): 23313-23326.
[11] SUDRE J, MORROW R A. Global surface current: a high-resolution product for investigating ocean dynamics[J]. Ocean Dynamics, 2008, 58(2): 101-118.
[12] DONGUY J R, MEYERS G. Mean annual variation of transport of major currents in the tropical Pacific Ocean[J]. Deep Sea Research Part I, 1996, 43(7): 1105-1122.
[13] JOHNSON G C, KUNZE E, MCTAGGART K E, et al. Temporal and spatial structure of the equatorial deep jets in the Pacific Ocean[J]. Journal of Physical Oceanography, 2002, 32(12): 3396-3407.
[14] FIRING E. Deep zonal currents in the central equatorial Pacific[J]. Journal of Marine Research, 1987, 45(4): 791-812.
[15] JOHNSON G C, SLOYAN B M, KESSLER W S, et al. Direct measurements of upper ocean currents and water properties across the tropical Pacific during the 1990s[J]. Progress in Oceanography, 2002, 52(1): 31-61.
[16] MASUMOTO Y, SASAKI H, KAGIMOTO T, et al. A fifty-year eddy-resolving simulation of the world ocean-preliminary outcomes of OFES (OGCM for the Earth Simulator) [J]. Journal of Earth Simulator, 2004, 4(1): 35-56.
[17] LIU Hailong, LIN Pengfei, YU Yongqiang, et al. The baseline evaluation of LASG/IAP Climate system Ocean Model (LICOM) version 2[J]. Acta Meteor Sinica, 2012, 26(3): 318-329.
[18] ERIC C, HARLEY H, JOSEPH M E, et al. US GODAE: global ocean prediction with the HYbrid Coordinate Ocean Model[J]. Oceanography, 2009, 22(2): 64-75.
[19] MENEMENLIS D, CAMPIN J M, HEIMBACH P, et al. ECCO2: high resolution global ocean and sea ice data synthesis[C]. AGU Fall Meeting, 2008.
[20] CARTON J A, GIESE B S. A reanalysis of ocean climate using Simple Ocean Data Assimilation[J]. Monthly Weather Review, 2008, 136(8): 2999-3017.
[21] 许建平.阿尔戈全球海洋观测大探秘[M].北京:海洋出版社,2002.
XU Jianping. Exploring of the Argo global oceanic observation system[M]. Beijing: China Ocean Press, 2002.
[22] 谢基平.利用ARGO浮标提取中层海流信息研究[D].南京:南京信息工程大学,2005.
XIE Jiping. A study on the acquirability of mid-depth current information by the Argo float[D]. Nanjing: Nanjing University of Information, 2005.
[23] PARK J J, KIM K, CRAWFORD W R. Inertial currents estimated from surface trajectories of ARGO floats[J]. Geophysical Research Letters, 2004, 31(13): 137-151.
[24] PARK J J, KIM K, KING B A, et al. An advanced method to estimate deep currents from profiling floats[J]. Journal of Atmospheric and Oceanic Technology, 2005, 22(8): 1294-1304.
[25] LEBEDEV K V, YOSHINARI H, MAXIMENKO N A, et al. Velocity data assessed from trajectories of Argo floats at parking level and at the sea surface[J]. IPRC Technical Note, 2007, 4(2): 1-16.
[26] XIE Jiping, ZHU Jiang. Estimation of the surface and mid-depth currents from Argo floats in the Pacific and error analysis[J]. Journal of Marine Systems, 2008, 73(1-2): 61-75.
[27] OLLITRAULT M, RANNOU J P. ANDRO: an Argo-based deep displacement dataset[J]. Journal of Atmospheric and Oceanic Technology, 2013, 30(4): 759-788.
[28] CRAVATTE S, KESSLER W S, MARIN F. Intermediate zonal jets in the tropical Pacific Ocean observed by Argo float[J]. Journal of Physical Oceanography, 2012, 42(9): 1475-1485.
[29] 马强,汪嘉宁,王凡.六套海洋模式模拟热带西太平洋深层环流结果的对比分析[J].海洋与湖沼,2017,48(6): 1302-1317.
MA Qiang, WANG Jianing, WANG Fan. Deep-layer circulation in tropical western pacific ocean based on six ocean models outputs[J]. Oceanologia et Limnologia Sinica, 2017, 48(6): 1302-1317.
[30] 夏一凡,杜岩,王天宇,等.基于Argo轨迹资料反演热带太平洋中层流场条带状结构特征[J].热带海洋学报,2017,36(4): 1-9.
XIA Yifan, DU Yan, WANG Tianyu, et al. Mid-depth zonal jets and their characteristics in the tropical Pacific Ocean derived from Argo trajectory[J]. Journal of Tropical Oceanography, 2017, 36(4): 1-9.
[31] LARGE W G, MCWILLIAMS J C, DONEY S C. Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization[J]. Reviews of Geophysics, 1994, 32(4): 363.
[32] CANUTO V M, HOWARD A, CHENG Y, et al. Ocean turbulence. Part I: One-point closure model—Momentum and heat vertical diffusivities[J]. Journal of Physical Oceanography, 2001, 31(6): 1413-1426.
[33] PERSSON A. The story of the Hovmöller diagram: An (almost) eyewitness account[J]. Bulletin of the American Meteorological Society, 2017, 98(5): 949-957.
[34] LUKAS R, FIRING E. The annual Rossby wave in the central equatorial Pacific Ocean[J]. Journal of Physical Oceanography, 1985, 15(1): 55-67.
PDF(4573 KB)

Accesses

Citation

Detail

Sections
Recommended

/