Journal of Marine Sciences ›› 2023, Vol. 41 ›› Issue (3): 1-13.DOI: 10.3969/j.issn.1001-909X.2023.03.001
MENG Yu1,2(), CHEN Shuangling1,2,*()
Received:
2023-01-19
Revised:
2023-05-23
Online:
2023-09-15
Published:
2023-10-24
CLC Number:
MENG Yu, CHEN Shuangling. Quantification of nitracline depth in seawater[J]. Journal of Marine Sciences, 2023, 41(3): 1-13.
Add to citation manager EndNote|Ris|BibTeX
URL: http://hyxyj.sio.org.cn/EN/10.3969/j.issn.1001-909X.2023.03.001
数据类型 | 时间范围 | 总站位数/个 | 预处理后站位数/个 | 数据利用率/% |
---|---|---|---|---|
CTD | 2002-01-18—2019-08-02 | 3 526 | 383 | 10.86 |
BGC-Argo | 2013-03-01—2017-02-24 | 427 | 159 | 37.24 |
Tab.1 Data statistics of BGC-Argo and CTD sampling sites
数据类型 | 时间范围 | 总站位数/个 | 预处理后站位数/个 | 数据利用率/% |
---|---|---|---|---|
CTD | 2002-01-18—2019-08-02 | 3 526 | 383 | 10.86 |
BGC-Argo | 2013-03-01—2017-02-24 | 427 | 159 | 37.24 |
Fig.2 Schematic diagrams of three nitracline depth calculation methods (cMLD represents the nitrate concentration of the MLD point of the profile, ci represents the nitrate concentration of the ith data point of the profile, ci-1 is the nitrate concentration of the (i-1)th data point, Δc1 is the difference between ci-1 and cMLD, Δc2 is the difference between ci and cMLD, d2c/d z i + 1 2 is the (i+1)th data point on the second derivative profile of nitrate concentration, σi and σi-1 represent the potential density of the ith and (i-1)th point, respective.)
Fig.4 Comparison of the ZN calculated by the three methods with the observed ZN (N is the amount of data, R2 is the coefficient of determination, and RMSE is the root mean square difference.)
统计参数 | 目视解译法 | 差值法 | 阈值法 | 梯度法 |
---|---|---|---|---|
R2 | 0.82 | 0.78 | 0.71 | 0.68 |
RMSE/m | 14.06 | 15.12 | 19.05 | 20.06 |
Tab.2 Comparison of the ZN calculated by the JOO model with the results of observed and other three methods calculated
统计参数 | 目视解译法 | 差值法 | 阈值法 | 梯度法 |
---|---|---|---|---|
R2 | 0.82 | 0.78 | 0.71 | 0.68 |
RMSE/m | 14.06 | 15.12 | 19.05 | 20.06 |
[1] | 张建平, 康建成, 任惠茹, 等. 东海北部营养盐分布的季节变化及成因探讨[J]. 海洋科学, 2010, 34(1):35-43. |
ZHANG J P, KANG J C, REN H R, et al. Seasonal variation and causative analysis of nutrients distribution in the northern of the East China Sea[J]. Marine Sciences, 2010, 34(1): 35-43. | |
[2] | 任玲, 杨军. 海洋中氮营养盐循环及其模型研究[J]. 地球科学进展, 2000, 15(1):58-64. |
REN L, YANG J. Nitrogen nutrients cycling in marine environment and its modeling research[J]. Advance in Earth Sciences, 2000, 15(1): 58-64. | |
[3] |
DUGDALE R C, GOERING J J. Uptake of new and regenerated forms of nitrogen in primary productivity[J]. Limnology and Oceanography, 1967, 12(2): 196-206.
DOI URL |
[4] |
EPPLEY R W, RENGER E H, HARRISON W G. Nitrate and phytoplankton production in southern California coastal waters[J]. Limnology and Oceanography, 1979, 24(3): 483-494.
DOI URL |
[5] | 焦念志, 王荣. 新生产力:一个新的海洋学研究领域[J]. 海洋与湖沼, 1993, 24(2):205-211. |
JIAO N Z, WANG R. New production—a new research area of oceanography[J]. Oceanologia et Limnologia Sinica, 1993, 24(2): 205-211. | |
[6] |
HICKMAN A E, MOORE C M, SHARPLES J, et al. Primary production and nitrate uptake within the seasonal thermocline of a stratified shelf sea[J]. Marine Ecology Progress Series, 2012, 463: 39-57.
DOI URL |
[7] |
EPPLEY R W, SAPIENZA C, RENGER E H. Gradients in phytoplankton stocks and nutrients off Southern California in 1974-76[J]. Estuarine and Coastal Marine Science, 1978, 7(3): 291-301.
DOI URL |
[8] |
OMAND M M, MAHADEVAN A. The shape of the oceanic nitracline[J]. Biogeosciences, 2015, 12(11): 3273-3287.
DOI URL |
[9] |
GONG X A, JIANG W S, WANG L H, et al. Analytical solution of the nitracline with the evolution of subsurface chlorophyll maximum in stratified water columns[J]. Biogeosciences, 2017, 14(9): 2371-2386.
DOI URL |
[10] |
BEHRENFELD M J, O’MALLEY R T, SIEGEL D A, et al. Climate-driven trends in contemporary ocean productivity[J]. Nature, 2006, 444(7120): 752-755.
DOI |
[11] |
CERMEÑO P, DUTKIEWICZ S, HARRIS R P, et al. The role of nutricline depth in regulating the ocean carbon cycle[J]. Proceedings of the National Academy of Sciences, 2008, 105(51): 20344-20349.
DOI URL |
[12] |
LEWIS M R, HEBERT D, HARRISON W G, et al. Vertical nitrate fluxes in the oligotrophic ocean[J]. Science, 1986, 234(4778): 870-873.
PMID |
[13] |
BAHAMÓN N, CRUZADO A. Modelling nitrogen fluxes in oligotrophic environments: NW Mediterranean and NE Atlantic[J]. Ecological Modelling, 2003, 163(3): 223-244.
DOI URL |
[14] |
AKSNES D L, OHMAN M D, RIVIÈRE P. Optical effect on the nitracline in a coastal upwelling area[J]. Limnology and Oceanography, 2007, 52(3): 1179-1187.
DOI URL |
[15] |
GOES J I, SAINO T, OAKU H, et al. Basin scale estimates of sea surface nitrate and new production from remotely sensed sea surface temperature and chlorophyll[J]. Geophysical Research Letters, 2000, 27(9): 1263-1266.
DOI URL |
[16] |
PAINTER S C, PATEY M D, TARRAN G A, et al. Picoeukaryote distribution in relation to nitrate uptake in the oceanic nitracline[J]. Aquatic Microbial Ecology, 2014, 72(3): 195-213.
DOI URL |
[17] |
PASQUERON DE FOMMERVAULT O, D’ORTENZIO F, MANGIN A, et al. Seasonal variability of nutrient concentrations in the Mediterranean Sea: Contribution of Bio-Argo floats[J]. Journal of Geophysical Research: Oceans, 2015, 120(12): 8528-8550.
DOI URL |
[18] |
WEN Z Z, BROWNING T J, CAI Y H, et al. Nutrient regulation of biological nitrogen fixation across the tropical western North Pacific[J]. Science Advances, 2022, 8(5): eabl7564.
DOI URL |
[19] |
LAANEMETS J, KONONEN K, PAVELSON J, et al. Vertical location of seasonal nutriclines in the western Gulf of Finland[J]. Journal of Marine Systems, 2004, 52(1-4): 1-13.
DOI URL |
[20] |
MAYOT N, MATRAI P, ELLINGSEN I H, et al. Assessing phytoplankton activities in the seasonal ice zone of the Greenland Sea over an annual cycle[J]. Journal of Geophysical Research: Oceans, 2018, 123(11): 8004-8025.
DOI URL |
[21] | 谢玲玲. 西北太平洋环流及其与南海水交换研究[D]. 青岛: 中国海洋大学, 2009. |
XIE L L. Study on the circulation in western north Pacific and the water exchange between the Pacific and the South China Sea[D]. Qingdao: Ocean University of China, 2009. | |
[22] | 李占强. 全球常年周平均海表温度场构建及其在西北太平洋中的应用[D]. 大连: 大连海洋大学, 2014. |
LI Z Q. Long-term weekly average field of sea surface temperature and used in northwest Pacific[D]. Dalian: Dalian Ocean University, 2014. | |
[23] | 余沛龙. 黑潮延伸体多尺度海洋变化及其对东亚气候的影响[D]. 长沙: 国防科技大学, 2018. |
YU P L. Multi-scale oceanic variations over the Kuroshio extension region and their influences on East Asian climate[D]. Changsha: National University of Defense Technology, 2018. | |
[24] |
陈朝晖, 林霄沛, 马昕, 等. 西北太平洋黑潮延伸体观测回顾和展望[J]. 地学前缘, 2022, 29(5):13-22.
DOI |
CHEN Z H, LIN X P, MA X, et al. Observational studies in the Kuroshio Extension region, Northwest Pacific—a review and outlook[J]. Earth Science Frontiers, 2022, 29(5): 13-22. | |
[25] |
POLOVINA J J, HOWELL E, KOBAYASHI D R, et al. The transition zone chlorophyll front, a dynamic global feature defining migration and forage habitat for marine resources[J]. Progress in Oceanography, 2001, 49(1-4): 469-483.
DOI URL |
[26] | 杨海燕, 毛新燕, 郭新宇. 基于WOD数据集的西北太平洋混合层内营养盐浓度初步研究[J]. 中国海洋大学学报:自然科学版, 2018, 48(8):1-9. |
YANG H Y, MAO X Y, GUO X Y. A preliminary study on nutrients concentration within the mixed layer in the northwest Pacific based on WOD data[J]. Periodical of Ocean University of China, 2018, 48(8): 1-9. | |
[27] |
KIM T W, LEE K, NAJJAR R G, et al. Increasing N abundance in the northwestern Pacific Ocean due to atmospheric nitrogen deposition[J]. Science, 2011, 334(6055): 505-509.
DOI URL |
[28] |
ZHENG L W, ZHAI W D. Excess nitrogen in the Bohai and Yellow Seas, China: Distribution, trends, and source apportionment[J]. Science of the Total Environment, 2021, 794: 148702.
DOI URL |
[29] |
BUCHANAN P J, AUMONT O, BOPP L, et al. Impact of intensifying nitrogen limitation on ocean net primary production is fingerprinted by nitrogen isotopes[J]. Nature Communications, 2021, 12: 6214.
DOI PMID |
[30] |
SEOK M W, KIM D, PARK G H, et al. Atmospheric deposition of inorganic nutrients to the Western North Pacific Ocean[J]. Science of the Total Environment, 2021, 793: 148401.
DOI URL |
[31] | 李娜, 甘波澜. 北太平洋副热带海区动力高度与净初级生产力相关性研究[J]. 中国海洋大学学报:自然科学版, 2020, 50(5):1-10. |
LI N, GAN B L. Correlation between dynamic height and net primary production in the subtropical North Pacific gyre[J]. Periodical of Ocean University of China, 2020, 50(5): 1-10. | |
[32] |
KANEKO H, YASUDA I, KOMATSU K, et al. Observations of vertical turbulent nitrate flux across the Kuroshio[J]. Geophysical Research Letters, 2013, 40(12): 3123-3127.
DOI URL |
[33] |
LONG Y, ZHU X H, GUO X Y. The oyashio nutrient stream and its nutrient transport to the mixed water region[J]. Geophysical Research Letters, 2019, 46(3): 1513-1520.
DOI URL |
[34] | 张龙, 叶松, 周树道, 等. 海水温盐深剖面测量技术综述[J]. 海洋通报, 2017, 36(5):481-489. |
ZHANG L, YE S, ZHOU S D, et al. Review of measurement techniques for temperature, salinity and depth profile of sea water[J]. Marine Science Bulletin, 2017, 36(5): 481-489. | |
[35] | PARADIS R, WOOD S L. Inexpensive expendable conductivity temperature and depth (CTD) sensor[C]// 2013 OCEANS-San Diego. IEEE, 2013: 1-12. |
[36] |
HERNANDEZ-LASHERAS J, MOURRE B. Dense CTD survey versus glider fleet sampling: Comparing data assimilation performance in a regional ocean model west of Sardinia[J]. Ocean Science, 2018, 14(5): 1069-1084.
DOI URL |
[37] |
CHEN S L, WELLS M L, HUANG R X, et al. Episodic subduction patches in the western North Pacific identified from BGC-Argo float data[J]. Biogeosciences, 2021, 18(19): 5539-5554.
DOI URL |
[38] | XING X G, WELLS M L, CHEN S L, et al. Enhanced winter carbon export observed by BGC-Argo in the northwest Pacific Ocean[J]. Geophysical Research Letters, 2020, 47(22): e2020GL089847. |
[39] | 邱国强, 王海黎, 邢小罡. BGC-Argo浮标观测在海洋生物地球化学中的应用[J]. 厦门大学学报:自然科学版, 2018, 57(6):827-840. |
QIU G Q, WANG H L, XING X G. Application of BGC-Argo floats observation to ocean biogeochemistry[J]. Journal of Xiamen University: Natural Science, 2018, 57(6): 827-840. | |
[40] | SPRINTALL J, TOMCZAK M. Evidence of the barrier layer in the surface layer of the tropics[J]. Journal of Geophysical Research: Oceans, 1992, 97(C5): 7305-7316. |
[41] | 安玉柱, 张韧, 王辉赞, 等. 全球大洋混合层深度的计算及其时空变化特征分析[J]. 地球物理学报, 2012, 55(7):2249-2258. |
AN Y Z, ZHANG R, WANG H Z, et al. Study on calculation and spatio-temporal variations of global ocean mixed layer depth[J]. Chinese Journal of Geophysics, 2012, 55(7): 2249-2258. | |
[42] | TSENG C M, WONG G T F, LIN I I, et al. A unique seasonal pattern in phytoplankton biomass in low-latitude waters in the South China Sea[J]. Geophysical Research Letters, 2005, 32(8): L08608. |
[43] |
WONG G T F, TSENG C M, WEN L S, et al. Nutrient dynamics and N-anomaly at the SEATS station[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2007, 54(14/15): 1528-1545.
DOI URL |
[44] | CULLEN J, EPPLEY R. Chlorophyll maximum layers of the southern-California Bight and possible mechanisms of their formation and maintenance[J]. Oceanologica Acta, 1981, 4: 23-32. |
[45] |
FUJIKI T, INOUE R, HONDA M C, et al. Time-series observations of photosynthetic oxygen production in the subtropical western North Pacific by an underwater profiling buoy system[J]. Limnology and Oceanography, 2020, 65(5): 1072-1084.
DOI URL |
[46] |
JOO H, LEE D B, KANG J J, et al. Inter-annual variation of the annual new production of phytoplankton in the southwestern East/Japan sea estimated from satellite-derived surface nitrate concentration[J]. Journal of Coastal Research, 2018, 85: 336-340.
DOI URL |
[47] |
VAHTERA E, LAANEMETS J, PAVELSON J, et al. Effect of upwelling on the pelagic environment and bloom-forming cyanobacteria in the western Gulf of Finland, Baltic Sea[J]. Journal of Marine Systems, 2005, 58(1/2): 67-82.
DOI URL |
[48] |
HOIKKALA L, AARNOS H, LIGNELL R. Changes in nutrient and carbon availability and temperature as factors controlling bacterial growth in the northern Baltic Sea[J]. Estuaries and Coasts, 2009, 32(4): 720-733.
DOI URL |
[1] | JIANG Jiaming, WANG Yilei. Interdecadal variation of ocean heat content at depth of 0-300 m in the tropical northwest Pacific [J]. Journal of Marine Sciences, 2022, 40(1): 1-11. |
[2] | LIU Hong-bo, PAN Guo-fu, YING Yuan-kang, HUANG Pan-yang, HU Tao-jun. A water-level correction method based on ocean tide dynamic model [J]. Journal of Marine Sciences, 2014, 32(2): 35-39. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||