
The applicability study of different typhoon wind fields in typhoon wave simulation in Zhejiang sea area
CHEN Xiangyu, YU Jiangmei, SHEN Yuan, NI Yunlin, LU Fan
Journal of Marine Sciences ›› 2024, Vol. 42 ›› Issue (2) : 15-25.
The applicability study of different typhoon wind fields in typhoon wave simulation in Zhejiang sea area
Combined with the Holland wind fields and the ERA5 wind fields, the mixed wind fields was set up by introducing a weight coefficient varying with the radius of wind speed, and a typhoon wave model in Zhejiang sea area was established using MIKE21 SW. Then, the Holland, the ERA5 and the mixed wind fields were used as the input wind fields to simulate the wind speed and the significant wave height during No.1918 typhoon Mitag, respectively. The verification shows that the simulated results obtained using the Holland wind fields and the ERA5 wind fields cannot agree accurately with the observed data, while the mixed wind fields proposed in this study can improve the simulation accuracy. In order to study whether the above conclusion is universal in Zhejiang sea area, five typical typhoons that have the most serious impact on Zhejiang sea area in the recent 5 years were selected for typhoon wave numerical simulations and the error statistical analysis. The results indicate the wind speed around the typhoon center is relatively good using the Holland wind fields and the average relative errors of the maximum wind speed are 8.62%-10.19%, but the average relative errors of the wind speed below 10 m/s is relatively bigger, reaching 29.76%-44.29%. However, the wind speed around the typhoon center using the ERA5 wind fields is smaller than the observed data, and the average relative errors of the maximum wind speed are 17.64%-25.77%, but the average relative errors of wind speed below 10 m/s are smaller than that using the Holland wind fields, which are 19.64%-32.00%. During the five typhoon processes, the average values of the average relative errors of the significant wave height driven by Holland, the ERA5 and the mixed wind fields are 29.92%, 25.62% and 22.82%, respectively. Correspondingly, the average root mean square errors are 0.46 m, 0.42 m and 0.39 m and the consistency indexes are 0.94, 0.95 and 0.96. The above results shows that the mixed wind fields proposed in this study is universal in Zhejiang sea area and can improve the simulation accuracy of typhoon waves.
MIKE21 SW / Holland wind fields / ERA5 wind fields / mixed wind fields / Zhejiang sea area / typhoon wave
[1] |
邱王泽禾, 章蓝文. 1917号台风“塔巴”对浙江沿海风场的影响及其成因分析[J]. 应用海洋学学报, 2021, 40(2):332-341.
|
[2] |
刘晓建, 侯堋, 胡晓张, 等. 超强台风“山竹”风浪过程数值模拟研究[J]. 长沙理工大学学报:自然科学版, 2023, 20(4):117-126.
|
[3] |
蒋璐璐, 涂小萍, 王毅, 等. “米娜”(1918)台风浪特征及其与“利奇马”(1909)的差异[J]. 海洋预报, 2021, 38(4):53-60.
|
[4] |
刘竹琴, 殷铭简, 赵西增, 等. 孤立波低顶海堤越浪的数值模拟研究[J]. 海洋工程, 2023, 41(4):91-102.
|
[5] |
季余, 朱业, 李莉, 等. 浙江沿海台风浪模式的参数适应性研究[J]. 海洋预报, 2023, 40(2):22-31.
|
[6] |
李江夏, 朱钰, 徐杰, 等. ERA-Interim和ERA5再分析风资料在中国近海的适用性对比研究[J]. 海洋通报, 2023, 42(3):260-271.
|
[7] |
李新文, 丁骏, 黄君宝, 等. 不同风场数据集对台风期间海浪模拟的影响[J]. 水利水运工程学报, 2021(6):34-42.
|
[8] |
李爱莲, 刘泽, 洪新, 等. 台风条件下ERA5再分析数据对中国近海适用性评估[J]. 海洋科学, 2021, 45(10):71-80.
|
[9] |
谭海燕, 邵珠晓, 梁丙臣, 等. ERA5风场与NCEP风场在黄海、东海波浪模拟的适用性对比研究[J]. 海洋通报, 2021, 40(5):524-540.
|
[10] |
张亮, 牛海英, 齐晴. 不同台风场模型的比较研究[J]. 山西建筑, 2015, 41(12):27-28.
|
[11] |
唐建, 史剑, 李训强, 等. 基于台风风场模型的台风浪数值模拟[J]. 海洋湖沼通报, 2013(2):24-30.
|
[12] |
梁连松, 李瑞杰, 丰青, 等. 舟山海域台风浪数值模拟[J]. 水道港口, 2014, 35(6):582-588.
|
[13] |
陈橙, 杜飞, 李焱, 等. 福建沿海台风浪模拟及其对台风路径平移的响应[J]. 水运工程, 2022(8):32-39.
|
[14] |
金罗斌, 陈国平, 赵红军, 等. 合成风场在南海台风浪数值模拟中的研究[J]. 水道港口, 2015, 36(1):12-20.
|
[15] |
赵津京, 李继选. 飓风极值波浪数值模拟[J]. 水运工程, 2017(6):39-44.
|
[16] |
黄靖茗. 台风路径对浙江渔港避风能力影响的研究[D]. 大连: 大连海洋大学, 2022.
|
[17] |
王卫远, 何倩倩, 杨娟. 杭州湾海域50年一遇波浪数值模拟研究[J]. 海洋学研究, 2013, 31(4):44-48.
|
[18] |
董美莹, 陈锋, 邱金晶, 等. ECMWF驱动场谱逼近对浙江超强台风“利奇马”(2019)精细化数值预报的影响[J]. 大气科学, 2021, 45(5):1071-1086.
|
[19] |
王海平, 董林. 2019年西北太平洋和南海台风活动概述[J]. 海洋气象学报, 2020, 40(2):1-9.
|
[20] |
项素清, 韩兴, 方鹤鸣, 等. 2106号台风“烟花”的路径及降水特点分析[J]. 海洋预报, 2023, 40(3):75-84.
|
[21] |
聂高臻, 钱奇峰. 2022年西北太平洋和南海台风活动概述[J]. 海洋气象学报, 2023, 43(4):99-109.
|
[22] |
吴福浪, 易军, 蒋迪. 2114号台风“灿都”东海北部海域曲折路径成因分析[J]. 浙江气象, 2022, 43(2):39-44.
|
[23] |
肖鸿飞, 王冬, 边志刚. 基于ERA5数据集的黄渤海海平面变化特征研究[J]. 海洋湖沼通报, 2020(5):9-15.
|
[24] |
刘涛, 陈学恩, 陈子健. 不同参数模型对南黄海典型台风的适用性研究[J]. 海洋湖沼通报, 2022, 44(2):8-16.
|
[25] |
|
[26] |
|
[27] |
|
[28] |
王其松, 邓家泉, 刘诚, 等. 叠加风场在南海台风浪数值后报中的应用研究[J]. 海洋学报, 2017, 39(7):70-79.
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
杨玉华, 雷小途. 我国登陆台风引起的大风分布特征的初步分析[J]. 热带气象学报, 2004, 20(6):633-642.
|
[35] |
潘冬冬, 王俊, 周川. 基于“山竹” 台风的波浪数值模拟[J]. 水道港口, 2021, 42(2):194-199,219.
|
[36] |
林金波, 毛鸿飞, 吴光林, 等. 基于混合风场的南海台风浪数值模拟[J]. 广东海洋大学学报, 2021, 41(6):44-52.
|
/
〈 |
|
〉 |