The applicability study of different typhoon wind fields in typhoon wave simulation in Zhejiang sea area

CHEN Xiangyu, YU Jiangmei, SHEN Yuan, NI Yunlin, LU Fan

Journal of Marine Sciences ›› 2024, Vol. 42 ›› Issue (2) : 15-25.

PDF(3814 KB)
PDF(3814 KB)
Journal of Marine Sciences ›› 2024, Vol. 42 ›› Issue (2) : 15-25. DOI: 10.3969/j.issn.1001-909X.2024.02.002

The applicability study of different typhoon wind fields in typhoon wave simulation in Zhejiang sea area

Author information +
History +

Abstract

Combined with the Holland wind fields and the ERA5 wind fields, the mixed wind fields was set up by introducing a weight coefficient varying with the radius of wind speed, and a typhoon wave model in Zhejiang sea area was established using MIKE21 SW. Then, the Holland, the ERA5 and the mixed wind fields were used as the input wind fields to simulate the wind speed and the significant wave height during No.1918 typhoon Mitag, respectively. The verification shows that the simulated results obtained using the Holland wind fields and the ERA5 wind fields cannot agree accurately with the observed data, while the mixed wind fields proposed in this study can improve the simulation accuracy. In order to study whether the above conclusion is universal in Zhejiang sea area, five typical typhoons that have the most serious impact on Zhejiang sea area in the recent 5 years were selected for typhoon wave numerical simulations and the error statistical analysis. The results indicate the wind speed around the typhoon center is relatively good using the Holland wind fields and the average relative errors of the maximum wind speed are 8.62%-10.19%, but the average relative errors of the wind speed below 10 m/s is relatively bigger, reaching 29.76%-44.29%. However, the wind speed around the typhoon center using the ERA5 wind fields is smaller than the observed data, and the average relative errors of the maximum wind speed are 17.64%-25.77%, but the average relative errors of wind speed below 10 m/s are smaller than that using the Holland wind fields, which are 19.64%-32.00%. During the five typhoon processes, the average values of the average relative errors of the significant wave height driven by Holland, the ERA5 and the mixed wind fields are 29.92%, 25.62% and 22.82%, respectively. Correspondingly, the average root mean square errors are 0.46 m, 0.42 m and 0.39 m and the consistency indexes are 0.94, 0.95 and 0.96. The above results shows that the mixed wind fields proposed in this study is universal in Zhejiang sea area and can improve the simulation accuracy of typhoon waves.

Key words

MIKE21 SW / Holland wind fields / ERA5 wind fields / mixed wind fields / Zhejiang sea area / typhoon wave

Cite this article

Download Citations
CHEN Xiangyu , YU Jiangmei , SHEN Yuan , et al . The applicability study of different typhoon wind fields in typhoon wave simulation in Zhejiang sea area[J]. Journal of Marine Sciences. 2024, 42(2): 15-25 https://doi.org/10.3969/j.issn.1001-909X.2024.02.002

References

[1]
邱王泽禾, 章蓝文. 1917号台风“塔巴”对浙江沿海风场的影响及其成因分析[J]. 应用海洋学学报, 2021, 40(2):332-341.
QIU W Z H, ZHANG L W. Analysis of the impacts and formation cause of coastal wind field in Zhejiang by 1917 typhoon Tapah[J]. Journal of Applied Oceanography, 2021, 40(2): 332-341.
[2]
刘晓建, 侯堋, 胡晓张, 等. 超强台风“山竹”风浪过程数值模拟研究[J]. 长沙理工大学学报:自然科学版, 2023, 20(4):117-126.
LIU X J, HOU P, HU X Z, et al. Numerical simulation of wind wave process of super typhoon “Mangkhut”[J]. Journal of Changsha University of Science & Technology: Natural Science, 2023, 20(4): 117-126.
[3]
蒋璐璐, 涂小萍, 王毅, 等. “米娜”(1918)台风浪特征及其与“利奇马”(1909)的差异[J]. 海洋预报, 2021, 38(4):53-60.
JIANG L L, TU X P, WANG Y, et al. Characteristics of typhoon-induced wave by Mitag(1918) and their differences with that induced by typhoon Lekima(1909)[J]. Marine Forecasts, 2021, 38(4): 53-60.
[4]
刘竹琴, 殷铭简, 赵西增, 等. 孤立波低顶海堤越浪的数值模拟研究[J]. 海洋工程, 2023, 41(4):91-102.
LIU Z Q, YIN M J, ZHAO X Z, et al. Numerical study of solitary wave overtopping a low-crested seawall[J]. The Ocean Engineering, 2023, 41(4): 91-102.
[5]
季余, 朱业, 李莉, 等. 浙江沿海台风浪模式的参数适应性研究[J]. 海洋预报, 2023, 40(2):22-31.
JI Y, ZHU Y, LI L, et al. Study on the parameters adaptability of typhoon wave model in Zhejiang coastal area[J]. Marine Forecasts, 2023, 40(2): 22-31.
[6]
李江夏, 朱钰, 徐杰, 等. ERA-Interim和ERA5再分析风资料在中国近海的适用性对比研究[J]. 海洋通报, 2023, 42(3):260-271.
LI J X, ZHU Y, XU J, et al. A comparative study on the applicability of ERA-Interim and ERA5 reanalysis wind data in the coastal waters of China[J]. Marine Science Bulletin, 2023, 42(3): 260-271.
[7]
李新文, 丁骏, 黄君宝, 等. 不同风场数据集对台风期间海浪模拟的影响[J]. 水利水运工程学报, 2021(6):34-42.
LI X W, DING J, HUANG J B, et al. Performance assessment of different wind forcing datasets for simulation of wind wave during typhoon[J]. Hydro-Science and Engineering, 2021(6): 34-42.
[8]
李爱莲, 刘泽, 洪新, 等. 台风条件下ERA5再分析数据对中国近海适用性评估[J]. 海洋科学, 2021, 45(10):71-80.
LI A L, LIU Z, HONG X, et al. Applicability of the ERA5 reanalysis data to China adjacent sea under typhoon condition[J]. Marine Sciences, 2021, 45(10): 71-80.
[9]
谭海燕, 邵珠晓, 梁丙臣, 等. ERA5风场与NCEP风场在黄海、东海波浪模拟的适用性对比研究[J]. 海洋通报, 2021, 40(5):524-540.
TAN H Y, SHAO Z X, LIANG B C, et al. A comparative study on the applicability of ERA5 wind and NCEP wind for wave simulation in the Huanghai Sea and East China Sea[J]. Marine Science Bulletin, 2021, 40(5): 524-540.
[10]
张亮, 牛海英, 齐晴. 不同台风场模型的比较研究[J]. 山西建筑, 2015, 41(12):27-28.
ZHANG L, NIU H Y, QI Q. Comparisons of several typhoon field models[J]. Shanxi Architecture, 2015, 41(12): 27-28.
[11]
唐建, 史剑, 李训强, 等. 基于台风风场模型的台风浪数值模拟[J]. 海洋湖沼通报, 2013(2):24-30.
TANG J, SHI J, LI X Q, et al. Numerical simulation of typhoon waves with typhoon wind model[J]. Transactions of Oceanology and Limnology, 2013(2): 24-30.
[12]
梁连松, 李瑞杰, 丰青, 等. 舟山海域台风浪数值模拟[J]. 水道港口, 2014, 35(6):582-588.
LIANG L S, LI R J, FENG Q, et al. Numerical simulation of typhoon wave in Zhoushan[J]. Journal of Waterway and Harbor, 2014, 35(6): 582-588.
[13]
陈橙, 杜飞, 李焱, 等. 福建沿海台风浪模拟及其对台风路径平移的响应[J]. 水运工程, 2022(8):32-39.
CHEN C, DU F, LI Y, et al. Simulation of typhoon waves along the coast of Fujian and its responses to typhoon path translation[J]. Port & Waterway Engineering, 2022(8): 32-39.
[14]
金罗斌, 陈国平, 赵红军, 等. 合成风场在南海台风浪数值模拟中的研究[J]. 水道港口, 2015, 36(1):12-20.
JIN L B, CHEN G P, ZHAO H J, et al. Study of combined wind in simulating storm waves in the South China Sea[J]. Journal of Waterway and Harbor, 2015, 36(1): 12-20.
[15]
赵津京, 李继选. 飓风极值波浪数值模拟[J]. 水运工程, 2017(6):39-44.
ZHAO J J, LI J X. Numerical simulation of extreme hurricane waves[J]. Port & Waterway Engineering, 2017(6): 39-44.
[16]
黄靖茗. 台风路径对浙江渔港避风能力影响的研究[D]. 大连: 大连海洋大学, 2022.
HUANG J M. Study on berthing capacity evaluation of Zhejiang fishing port under the influence of typhoon[D]. Dalian: Dalian Ocean University, 2022.
[17]
王卫远, 何倩倩, 杨娟. 杭州湾海域50年一遇波浪数值模拟研究[J]. 海洋学研究, 2013, 31(4):44-48.
WANG W Y, HE Q Q, YANG J. Numerical simulation research of wave with a return period of 50 years in the Hangzhou Bay[J]. Journal of Marine Sciences, 2013, 31(4): 44-48.
[18]
董美莹, 陈锋, 邱金晶, 等. ECMWF驱动场谱逼近对浙江超强台风“利奇马”(2019)精细化数值预报的影响[J]. 大气科学, 2021, 45(5):1071-1086.
DONG M Y, CHEN F, QIU J J, et al. Impact of spectral nudging technique driven with ECMWF data on the fine numerical prediction of super typhoon Lekima(2019) in Zhejiang Province[J]. Chinese Journal of Atmospheric Sciences, 2021, 45(5): 1071-1086.
[19]
王海平, 董林. 2019年西北太平洋和南海台风活动概述[J]. 海洋气象学报, 2020, 40(2):1-9.
WANG H P, DONG L. Overview of typhoon activities over western North Pacific and the South China Sea in 2019[J]. Journal of Marine Meteorology, 2020, 40(2): 1-9.
[20]
项素清, 韩兴, 方鹤鸣, 等. 2106号台风“烟花”的路径及降水特点分析[J]. 海洋预报, 2023, 40(3):75-84.
XIANG S Q, HAN X, FANG H M, et al. The path and precipitation characteristics of “In-Fa” in typhoon 2106[J]. Marine Forecasts, 2023, 40(3): 75-84.
[21]
聂高臻, 钱奇峰. 2022年西北太平洋和南海台风活动概述[J]. 海洋气象学报, 2023, 43(4):99-109.
NIE G Z, QIAN Q F. Overview of typhoon activities over western North Pacific and the South China Sea in 2022[J]. Journal of Marine Meteorology, 2023, 43(4): 99-109.
[22]
吴福浪, 易军, 蒋迪. 2114号台风“灿都”东海北部海域曲折路径成因分析[J]. 浙江气象, 2022, 43(2):39-44.
WU F L, YI J, JIANG D. Cause analysis of winding path of Typhoon Candu in the northern East China Sea[J]. Journal of Zhejiang Meteorology, 2022, 43(2): 39-44.
[23]
肖鸿飞, 王冬, 边志刚. 基于ERA5数据集的黄渤海海平面变化特征研究[J]. 海洋湖沼通报, 2020(5):9-15.
XIAO H F, WANG D, BIAN Z G. Study on the characteristics of sea level change in the Bohai and Yellow Seas based on ERA5 dataset[J]. Transactions of Oceanology and Limnology, 2020(5): 9-15.
[24]
刘涛, 陈学恩, 陈子健. 不同参数模型对南黄海典型台风的适用性研究[J]. 海洋湖沼通报, 2022, 44(2):8-16.
LIU T, CHEN X E, CHEN Z J. A study on the applicability of different models to typical typhoons in the South Yellow Sea[J]. Transactions of Oceanology and Limnology, 2022, 44(2): 8-16.
[25]
HOLLAND G J. An analytic model of the wind and pressure profiles in hurricanes[J]. Monthly Weather Review, 1980, 108(8): 1212-1218.
[26]
WILLOUGHBY H E, RAHN M E. Parametric representation of the primary hurricane Vortex. Part I: Observations and evaluation of the Holland (1980) model[J]. Monthly Weather Review, 2004, 132(12): 3033-3048.
[27]
PAN Y, CHEN Y P, LI J X, et al. Improvement of wind field hindcasts for tropical cyclones[J]. Water Science and Engineering, 2016, 9(1): 58-66.
[28]
王其松, 邓家泉, 刘诚, 等. 叠加风场在南海台风浪数值后报中的应用研究[J]. 海洋学报, 2017, 39(7):70-79.
WANG Q S, DENG J Q, LIU C, et al. Application of superimposed wind fields to the hindcast modelling of typhoon-induced waves in the South China Sea[J]. Haiyang Xuebao, 2017, 39(7): 70-79.
[29]
ROLDÁN M, MONTOYA R D, RIOS J D, et al. Modified parametric hurricane wind model to improve the asymmetry in the region of maximum winds[J]. Ocean Engineering, 2023, 280: 114508.
[30]
TIAN Z, ZHANG Y. Numerical estimation of the typhoon-induced wind and wave fields in Taiwan Strait[J]. Ocean Engineering, 2021, 239: 109803.
[31]
SHAO Z X, LIANG B C, LI H J, et al. Blended wind fields for wave modeling of tropical cyclones in the South China Sea and East China Sea[J]. Applied Ocean Research, 2018, 71: 20-33.
[32]
XIONG J, YU F J, FU C F, et al. Evaluation and improvement of the ERA5 wind field in typhoon storm surge simulations[J]. Applied Ocean Research, 2022, 118:103000.
[33]
WILLMOTT C J. On the validation of models[J]. Physical Geography, 1981, 2(2): 184-194.
[34]
杨玉华, 雷小途. 我国登陆台风引起的大风分布特征的初步分析[J]. 热带气象学报, 2004, 20(6):633-642.
YANG Y H, LEI X T. Statistics of strong wind distribution caused by landfall typhoon in China[J]. Journal of Tropical Meteorology, 2004, 20(6): 633-642.
[35]
潘冬冬, 王俊, 周川. 基于“山竹” 台风的波浪数值模拟[J]. 水道港口, 2021, 42(2):194-199,219.
PAN D D, WANG J, ZHOU C. Numerical simulation of wave based on Typhoon Mangkhut[J]. Journal of Waterway and Harbor, 2021, 42(2): 194-199, 219.
[36]
林金波, 毛鸿飞, 吴光林, 等. 基于混合风场的南海台风浪数值模拟[J]. 广东海洋大学学报, 2021, 41(6):44-52.
LIN J B, MAO H F, WU G L, et al. Numerical modeling of typhoon waves in South China Sea based on mixed wind field[J]. Journal of Guangdong Ocean University, 2021, 41(6): 44-52.
PDF(3814 KB)

Accesses

Citation

Detail

Sections
Recommended

/