Joint inversion of gravity and seismic along the CMD01 profile on the southwestern margin of Madagascar and analysis of crustal structure

ZHANG Yongqi, TANG Yong, DONG Chongzhi, WU Zhaocai, LI He, GUO Chufeng, REN Jianye, CHAO Peng, YANG Tianyi

Journal of Marine Sciences ›› 2024, Vol. 42 ›› Issue (4) : 83-99.

PDF(37887 KB)
PDF(37887 KB)
Journal of Marine Sciences ›› 2024, Vol. 42 ›› Issue (4) : 83-99. DOI: 10.3969/j.issn.1001-909X.2024.04.008

Joint inversion of gravity and seismic along the CMD01 profile on the southwestern margin of Madagascar and analysis of crustal structure

Author information +
History +

Abstract

This study was based on the actual gravity, magnetic and multichannel seismic data obtained during the international cooperative survey in 2021. Through joint inversion of gravity and seismic along the CMD01 profile traversing the southwestern margin of Madagascar, combined with interpretation and analysis of seismic profiles, the crustal structure, tectonic units, and evolution of the southwestern margin of Madagascar were studied. A crustal density model of the southwestern margin of Madagascar was established, revealing thinned continental crust and the presence of magmatic underplating in certain segments. Structural units such as thinned continental crust, continental-ocean transition zone and oceanic crust domain can be delineated from land to sea, among which, due to the influence of Davie Fracture Zone strike-slip tectonics on the margin, the continental-ocean transition zone exhibited typical characteristics of a transform margin. By combining plate reconstruction and crustal density model, the developmental evolution of the southwestern margin of Madagascar was reconstructed. The research results have important theoretical significance and practical application value for deepening the understanding of the breakup and separation of the Gondwana, the developmental evolution of the East African passive margin, and maritime delineation.

Key words

The continental edge of East Africa / Davie Fracture Zone / continental-ocean transition zone / transform margin / joint inversion of gravity and seismic / deep crustal structure / crustal density model / lower crustal high-density body

Cite this article

Download Citations
ZHANG Yongqi , TANG Yong , DONG Chongzhi , et al . Joint inversion of gravity and seismic along the CMD01 profile on the southwestern margin of Madagascar and analysis of crustal structure[J]. Journal of Marine Sciences. 2024, 42(4): 83-99 https://doi.org/10.3969/j.issn.1001-909X.2024.04.008

References

[1]
张光亚, 刘小兵, 赵健, 等. 东非被动大陆边缘盆地演化及大气田形成主控因素:以鲁武马盆地为例[J]. 地学前缘, 2018, 25(2):24-32.
Abstract
东非被动大陆边缘盆地近年来发现了一系列大气田,主要分布于鲁武马盆地,其可采储量达3.8×1012 m3。盆地经历了卡鲁裂谷期、马达加斯加裂谷期和马达加斯加漂移期等3期构造演化。其中,马达加斯加裂谷期形成下侏罗统—中侏罗统湖相滨浅海相烃源岩,于早白垩世进入生油门限,晚白垩世达到生油高峰,渐新世进入生气窗。受马达加斯加漂移期东非陆上断裂系统活动影响,大量富砂沉积物以块体搬运和深海滑塌方式向深水区堆积,形成了盆地内面积广、厚度大、岩性相对均一且物性良好的超大型深水重力流沉积砂体;漂移期海相泥页岩则为良好的区域性盖层。东非陆上早期隆升和三角洲进积作用使鲁武马盆地形成重力滑动和盐底辟构造,渐新统—上新统内形成东非被动陆缘正断层带(EANFZ)和逆冲断层带(EATFZ),下伏中—下侏罗统烃源岩生成油气沿正断层和深水区逆冲断层向上运移,聚集于构造岩性地层、构造圈闭中,形成大气田。
ZHANG G Y, LIU X B, ZHAO J, et al. Passive continental margin basin evolution of East Africa and the main controlling factors of giant gas fields: An example from the Rovuma Basin[J]. Earth Science Frontiers, 2018, 25(2): 24-32.
Many giant gas fields, concentrated in the Rovuma Basin of the East Africa passive margin basins, were discovered in recent years with a total recoverable reserves up to 3.8 trillion cubic meters. The Rovuma Basin has gone through three stages of tectonic evolution, i.e. the Karoo rift, Madagascar rift and Madagascar drift. The LowerMiddle Jurassic lacustrine and shallow sea source rocks formed in the Madagascar rift period, and came to the oil window, the peak of oil generation and the gas window, in the Early Cretaceous, the Late Cretaceous and the Oligocene, respectively. Affected by the East Africa onshore faults during the Madagascar drift period, massive sandrich sediments accumulated towards the deep water region by way of block transport and deep water sliding. It formed a super giant deepwatergravityflow sandbody, wide and thick, with relatively uniform lithology and favorable physical property within the basin. The marine mudstone during the Madagascar drift period provided a good regional overlying strata. The early uplift onshore East Africa and delta progradation led to the formation of gravity sliding and salt diapir within the Rovuma Basin, and subsequently the East Africa normal fault zone (EANFZ) and the East Africa thrust fault zone (EATFZ), between the Oligocene and Pliocene. As a result, hydrocarbons from the underlying LowerMiddle Jurassic source rocks migrated upward along the normal and deep water thrust faults, accumulating in the structurallithologicalstratigraphy and structural traps to form the giant gas fields.<br>
[2]
REEVES C V, TEASDALE J P, MAHANJANE E S. Insight into the Eastern Margin of Africa from a new tectonic model of the Indian Ocean[J]. Geological Society, London, Special Publications, 2016, 431(1): 299-322.
[3]
温志新, 王兆明, 宋成鹏, 等. 东非被动大陆边缘盆地结构构造差异与油气勘探[J]. 石油勘探与开发, 2015, 42(5):671-680.
Abstract
基于板块构造理论,通过研究地震、地质及相关文献资料,恢复东非被动大陆边缘主要地质时期原型盆地及岩相古地理,开展盆地结构构造特征及其沉积充填差异分析,结合已发现的15个油气藏解剖,建立3种成藏模式,探讨该区有利成藏组合及下一步勘探方向。东非被动大陆边缘盆地群历经晚石炭世—三叠纪卡鲁(Karoo)期陆内夭折裂谷、侏罗纪陆内—陆间裂谷及白垩纪以来的被动大陆边缘盆地3个原型阶段,各个盆地裂谷层系普遍发育,受拗陷期沉积充填厚度大小影响,形成“断陷型”、“断坳型”和“三角洲改造型”3类被动陆缘盆地:“断陷型”拗陷期沉积最大厚度小于3 000 m,形成“单源-构造型”成藏模式,勘探方面以寻找裂谷层系顶部发育的大型构造类圈闭为主;“断坳型”拗陷期沉积最大厚度大于5 000 m,形成“双源-双组合型”成藏模式,勘探方面以上、中斜坡大型滑动—滑塌—碎屑流沉积砂体为目标;“三角洲改造型”拗陷期沉积最大厚度大于6 000 m且发育高建设性三角洲,从岸向海形成独特生长断裂、泥底辟、逆冲推覆、前渊缓坡四大构造带,形成“三源-多组合型”成藏模式,其四大构造带均可形成大型油气田。图8表2参27
WEN Z X, WANG Z M, SONG C P, et al. Structural architecture difference and petroleum exploration of passive continental margin basins in East Africa[J]. Petroleum Exploration and Development, 2015, 42(5): 671-680.
[4]
许志刚, 韩文明, 孙玉梅. 东非大陆边缘构造演化过程与油气勘探潜力[J]. 中国地质, 2014, 41(3):961-969.
XU Z G, HAN W M, SUN Y M. Tectonic evolution and petroleum exploration prospect of East Africa[J]. Geology in China, 2014, 41(3): 961-969.
[5]
COFFIN M F, RABINOWITZ P D. Reconstruction of Mada-gascar and Africa: Evidence from the Davie fracture zone and western Somali Basin[J]. Journal of Geophysical Research, 1987, 92(B9): 9385-9406.
[6]
SINHA S T, SAHA S, LONGACRE M, et al. Crustal archi-tecture and nature of continental breakup along a transform margin: New insights from Tanzania-Mozambique margin[J]. Tectonics, 2019, 38(4): 1273-1291.
[7]
VORMANN M, JOKAT W. The crustal structure of the Kerimbas Basin across the offshore branch of the East African Rift System[J]. Geophysical Journal International, 2021, 226(3): 2073-2102.
[8]
MEERT J G, TAMRAT E. Paleomagnetic evidence for a stationary Marion hotspot: Additional paleomagnetic data from Madagascar[J]. Gondwana Research, 2006, 10(3/4): 340-348.
[9]
STOREY M, MAHONEY J J, SAUNDERS A D, et al. Timing of hot spot: Related volcanism and the breakup of Madagascar and India[J]. Science, 1995, 267(5199): 852-855.
[10]
JOURDAN F, BERTRAND H, FÉRAUD G, et al. Litho-spheric mantle evolution monitored by overlapping large igneous provinces: Case study in southern Africa[J]. Lithos, 2009, 107(3/4): 257-268.
[11]
CATUNEANU O, WOPFNER H, ERIKSSON P G, et al. The Karoo Basins of south-central Africa[J]. Journal of African Earth Sciences, 2005, 43(1/2/3): 211-253.
[12]
COX K G. Karoo igneous activity, and the early stages of the break-up of Gondwanaland[J]. Journal of the Geological Society, 1992, 68(1): 137-148.
[13]
EAGLES G, HOANG H H. Cretaceous to present kinematics of the Indian, African and Seychelles plates[J]. Geophysical Journal International, 2014, 196(1): 1-14.
[14]
COLLIER J S, SANSOM V, ISHIZUKA O, et al. Age of Seychelles-India break-up[J]. Earth and Planetary Science Letters, 2008, 272(1/2): 264-277.
[15]
GEIGER M, CLARK D N, METTE W. Reappraisal of the timing of the breakup of Gondwana based on sedimentological and seismic evidence from the Morondava Basin, Madagascar[J]. Journal of African Earth Sciences, 2004, 38(4): 363-381.
[16]
覃阳亮, 何幼斌, 蔡俊, 等. 东非海岸Davie构造带的构造演化特征及其成因机制[J]. 岩性油气藏, 2021, 33(2):104-115.
QIN Y L, HE Y B, CAI J, et al. Tectonic evolution and formation mechanism of Davie Fracture Zone in East Africa coast[J]. Lithologic Reservoirs, 2021, 33(2): 104-115.
[17]
KLIMKE J, FRANKE D, MAHANJANE E S, et al. Tie points for Gondwana reconstructions from a structural inter-pretation of the Mozambique Basin, East Africa and the Riiser-Larsen Sea, Antarctica[J]. Solid Earth, 2018, 9(1): 25-37.
[18]
REEVES C. The position of Madagascar within Gondwana and its movements during Gondwana dispersal[J]. Journal of African Earth Sciences, 2014, 94: 45-57.
[19]
KLIMKE J, FRANKE D. Gondwana breakup: No evidence for a Davie Fracture Zone offshore northern Mozambique, Tanzania and Kenya[J]. Terra Nova, 2016, 28(4): 233-244.
[20]
MAHANJANE E S. A geotectonic history of the northern Mozambique Basin including the Beira High—A contribution for the understanding of its development[J]. Marine and Petroleum Geology, 2012, 36(1): 1-12.
[21]
LEINWEBER V T, JOKAT W. The Jurassic history of the Africa-Antarctica corridor—New constraints from magnetic data on the conjugate continental margins[J]. Tectonophysics, 2012, 530/531: 87-101.
[22]
KÖNIG M, JOKAT W. The Mesozoic breakup of the Weddell Sea[J]. Journal of Geophysical Research: Solid Earth, 2006, 111: B12102.
[23]
SCHANDELMEIER H, BREMER F, HOLL H G. Kinematic evolution of the Morondava rift basin of SW Madagascar—From wrench tectonics to normal extension[J]. Journal of African Earth Sciences, 2004, 38(4): 321-330.
[24]
SALMAN G, ABDULA I. Development of the Mozambique and Ruvuma sedimentary basins, offshore Mozambique[J]. Sedimentary Geology, 1995, 96(1/2): 7-41.
[25]
NAIRN A E M, LERCHE I, ILIFFE J E. Geology, basin analysis, and hydrocarbon potential of Mozambique and the Mozambique Channel[J]. Earth-Science Reviews, 1991, 30(1/2): 81-123.
[26]
WARNER M R. Seismic reflections from the Moho—The effect of isostasy[J]. Geophysical Journal International, 1987, 88(2): 425-435.
[27]
KLIMKE J, FRANKE D, GAEDICKE C, et al. How to identify oceanic crust—Evidence for a complex break-up in the Mozambique Channel, off East Africa[J]. Tectono-physics, 2016, 693: 436-452.
[28]
VORMANN M, FRANKE D, JOKAT W. The crustal structure of the southern Davie Ridge offshore northern Mozambique—A wide-angle seismic and potential field study[J]. Tectonophysics, 2020, 778: 228370.
[29]
MUELLER C O, JOKAT W, SCHRECKENBERGER B. The crustal structure of Beira High, central Mozambique—Combined investigation of wide-angle seismic and potential field data[J]. Tectonophysics, 2016, 683: 233-254.
[30]
于璇, 侯贵廷, 代双河, 等. 东非大陆边缘构造演化与油气成藏模式探析[J]. 地质科技情报, 2015, 34(6):147-154,158.
YU X, HOU G T, DAI S H, et al. Tectonic evolution and hydrocarbon pooling patterns analysis in East Africa continental margin[J]. Bulletin of Geological Science and Technology, 2015, 34(6): 147-154, 158.
[31]
黄国平, 胡清乐, 陈冬明, 等. 马达加斯加地质矿产概况[J]. 资源环境与工程, 2014, 28(5):626-632.
Abstract
马达加斯加是非洲东南部岛国,成矿地质条件有利,矿产资源丰富。该国属非洲克拉通组成部分,以前寒武纪构造—岩浆—变质杂岩为主,西部及东、西海岸带分布少量晚古生代—中生代泥砂质碎屑岩—碳酸盐岩和中新生代火山—沉积岩系。该国矿产主要分布于前寒武纪地质体中,少数沉积型矿产赋存于晚古生代—新生代地层内,主要矿产有铁、铬、钛、镍、钴、铝、金、石墨、煤及宝石等。
HUANG G P, HU Q L, CHEN D M, et al. General situation of geology and mineral resources in Madagascar[J]. Resources Environment & Engineering, 2014, 28(5): 626-632.
[32]
COLLINSA S, WINDLEY B F. The tectonic evolution of central and northern Madagascar and its place in the final assembly of Gondwana[J]. The Journal of Geology, 2002, 110(3): 325-339.
[33]
RYZHOVA D A, KOSNYREVA M V, DUBININ E P, et al. The structure tectonosphere of the Mozambique and Mada-gascar ridges by geophysical data[J]. Moscow University Geology Bulletin, 2022, 77(1): 18-27.
[34]
FUNCK T, HOPPER J R, LARSEN H C, et al. Crustal structure of the ocean-continent transition at Flemish Cap: Seismic refractionresults[J]. Journal of Geophysical Research, 2003, 108: 2531.
[35]
BOILLOT G, GRIMAUD S, MAUFFRET A, et al. Ocean-continent boundary off the Iberian margin: Aserpentinite diapir west of the Galicia Bank[J]. Earth and Planetary Science Letters, 1980, 48(1): 23-34.
[36]
HIRSCH K K, BAUER K, SCHECK-WENDEROTH M. Deep structure of the western South African passive margin—Results of a combined approach of seismic, gravity and isostatic investigations[J]. Tectonophysics, 2009, 470(1/2): 57-70.
[37]
MINSHULL T A, LANE C I, COLLIER J S, et al. The relationship between rifting and magmatism in the north-eastern Arabian Sea[J]. Nature Geoscience, 2008, 1: 463-467.
[38]
MASINI E, MANATSCHAL G, MOHN G. The Alpine Tethys rifted margins: Reconciling old and new ideas to understand the stratigraphic architecture of magma-poor rifted margins[J]. Sedimentology, 2013, 60(1): 174-196.
[39]
PÉRON-PINVIDIC G, MANATSCHAL G. From microconti-nents to extensional allochthons: Witnesses of how continents rift and break apart?[J]. Petroleum Geoscience, 2010, 16(3): 189-197.
[40]
MAIA M, SICHEL S, BRIAIS A, et al. Extreme mantle uplift and exhumation along a transpressive transform fault[J]. Nature Geoscience, 2016, 9: 619-623.
[41]
VOLKER T L, FRAUKE K, SÖNKE N, et al. The crustal structure of the Central Mozambique continental margin—Wide-angle seismic, gravity and magnetic study in the Mozambique Channel, Eastern Africa[J]. Tectonophysics, 2013, 599: 170-196.
[42]
HUISMANS R, BEAUMONT C. Depth-dependent extension, two-stage breakup and cratonic underplating at rifted margins[J]. Nature, 2011, 473: 74-78.
[43]
AUTIN J, LEROY S, BESLIER M O, et al. Continental break-up history of a deep magma-poor margin based on seismic reflection data (northeastern Gulf of Aden margin, offshore Oman)[J]. Geophysical Journal International, 2010, 180(2): 501-519.
[44]
FRANKE D. Rifting, lithosphere breakup and volcanism: Comparison of magma-poor and volcanic rifted margins[J]. Marine and Petroleum Geology, 2013, 43: 63-87.
[45]
GEOFFROY L. Volcanic passivemargins[J]. Comptes Rendus Géoscience, 2005, 337(16): 1395-1408.
[46]
SINHA S T, NEMČOK M, CHOUDHURI M, et al. The role of break-up localization in microcontinent separation along a strike-slip margin: The East India-Elan Bank case study[J]. Geological Society, London, Special Publications, 2016, 431(1): 95-123.
[47]
PHETHEAN J J J, KALNINS L M, VAN HUNEN J, et al. Madagascar’s escape from Africa: A high-resolution plate reconstruction for the Western Somali Basin and implications for supercontinent dispersal[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(12): 5036-5055.
[48]
DAVISON I, FAULL T, GREENHALGH J, et al. Trans-pressional structures and hydrocarbon potential along the Romanche Fracture Zone: A review[J]. Geological Society, London, Special Publications, 2016, 431(1): 235-248.
[49]
MUELLER C O, JOKAT W. The initial Gondwana break-up: A synthesis based on new potential field data of the Africa-Antarctica Corridor[J]. Tectonophysics, 2019, 750: 301-328.
[50]
FRANKE D, JOKAT W, LADAGE S, et al. The offshore East African Rift System: Structural framework at the toe of a juvenile rift[J]. Tectonics, 2015, 34(10): 2086-2104.
[51]
SAUTER D, UNTERNEHR P, MANATSCHAL G, et al. Evidence for magma entrapment below oceanic crust from deep seismic reflections in the Western Somali Basin[J]. Geology, 2016, 44(6): 407-410.
[52]
GAINA C, TORSVIK T H, VAN HINSBERGEN D J J, et al. The African Plate: A history of oceanic crust accretion and subduction since the Jurassic[J]. Tectonophysics, 2013, 604: 4-25.
[53]
VORMANN M, JOKAT W. Crustal variability along the rifted/sheared East African margin: A review[J]. Geo-Marine Letters, 2021, 41(2): 19.
PDF(37887 KB)

Accesses

Citation

Detail

Sections
Recommended

/