PDF(4636 KB)
Research progress on the mechanism of sedimentary carbon sink in delta-shelf systems
FAN Daidu, ZHANG Qiaowen, WU Yijing, SU Jianfeng, WEI Bingbing, NI Sha
Journal of Marine Sciences ›› 2025, Vol. 43 ›› Issue (4) : 3-20.
PDF(4636 KB)
PDF(4636 KB)
Research progress on the mechanism of sedimentary carbon sink in delta-shelf systems
The sediment source-to-sink system serves as a critical link connecting active carbon pools (e.g., atmosphere, biosphere, hydrosphere) with the stable lithospheric carbon pool, playing a core buffering role in the global carbon cycle. As the core area of marine sedimentary carbon sinks, delta-shelf regions account for over 80% of the global marine sedimentary organic carbon flux while occupying less than 8% of the global ocean area. The processes and mechanisms of carbon burial in these regions are crucial for global carbon balance. This paper systematically reviews the source composition and sedimentary flux characteristics of terrestrial organic carbon in delta-shelf sedimentary systems, focuses on elaborating organic carbon source-to-sink tracing technologies, remineralization processes and their dominant mechanisms, analyzes the impacts of human activities on sedimentary carbon sinks, and discusses marine negative emission and carbon sequestration enhancement schemes based on sediment management. Studies show that the heterogeneity of terrestrial organic carbon, physicochemical conditions of the sedimentary environment, and human disturbance collectively regulate the migration, transformation, and burial efficiency of organic carbon. Currently, the potential of sedimentary carbon sinks has not been fully exploited; thus, it is urgent to promote the integration of sedimentary carbon sinks into the global climate governance system through methodological innovation, mechanism deepening, and technological development, so as to provide scientific support and feasible paths for achieving the temperature control goals of the Paris Agreement.
sediment source-to-sink system / river-dominated continental margins / delta / carbon cycle / organic carbon / burial efficiency / sedimentary carbon sink / carbon sequestration enhancement scheme
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
Mountain uplift and erosion have regulated the balance of carbon between Earth’s interior and atmosphere, where prior focus has been placed on the role of silicate mineral weathering in CO2 drawdown and its contribution to the stability of Earth’s climate in a habitable state1–5. However, weathering can also release CO2 as rock organic carbon (OCpetro) is oxidized at the near surface6,7; this important geological CO2 flux has remained poorly constrained3,8. We use the trace element rhenium in combination with a spatial extrapolation model to quantify this flux across global river catchments3,9. We find a CO2 release of $${68}_{-6}^{+18}$$\n \n \n 68\n \n \n −\n 6\n \n \n +\n 18\n \n \n megatons of carbon annually from weathering of OCpetro in near-surface rocks, rivalling or even exceeding the CO2 drawdown by silicate weathering at the global scale10. Hotspots of CO2 release are found in mountain ranges with high uplift rates exposing fine-grained sedimentary rock, such as the eastern Himalayas, the Rocky Mountains and the Andes. Our results demonstrate that OCpetro is far from inert and causes weathering in regions to be net sources or sinks of CO2. This raises questions, not yet fully studied, as to how erosion and weathering drive the long-term carbon cycle and contribute to the fine balance of carbon fluxes between the atmosphere, biosphere and lithosphere2,11.
|
| [7] |
|
| [8] |
Biospheric organic carbon (OC) burial and petrogenic OC oxidation are fundamental controls in the regulation of global CO2 concentrations. River deltas are among the largest OC sinks in the ocean, storing substantial amounts of terrestrial OC originating from both the biosphere and lithosphere. However, the extent of biospheric and petrogenic OC storage in deltas remains poorly understood. Here, we quantified biospheric and petrogenic OC burial rates in a dynamic river delta, the Yellow River Delta, using geomorphology and carbon isotopic analyses. The Yellow River Delta is characterized by high burial rates of petrogenic OC (109 ± 27 g m–2 yr–1) and pre-aged soil OC (107 ± 27 g m–2 yr–1), followed by terrestrial modern OC (87 ± 21 g m–2 yr–1) and marine OC (48 ± 16 g m–2 yr–1). The deltaic biospheric OC burial rate (242 g m–2 yr–1) is up to 70 times higher than the global average in marginal seas. By analyzing biospheric and petrogenic OC burial rates and fluxes in global deltas and marginal seas, we highlight the critical role of deltas as major sinks for biospheric OC. This study underscores the importance of distinguishing between biospheric and petrogenic OC when assessing carbon sinks to better constrain their influence on atmospheric CO2 levels.
|
| [9] |
|
| [10] |
|
| [11] |
Understanding the fate of terrestrial organic carbon (Corg) delivered to oceans by rivers is critical for constraining models of biogeochemical cycling and Earth surface evolution. Corg fate is dependent on both intrinsic characteristics (molecular structure, matrix) and the environmental conditions to which fluvial Corg is subjected. Three distinct patterns are evident on continental margins supplied by rivers: (a) high-energy, mobile muds with enhanced oxygen exposure and efficient metabolite exchange have very low preservation of both terrestrial and marine Corg (e.g., Amazon subaqueous delta); (b) low-energy facies with extreme accumulation have high Corg preservation (e.g., Ganges-Brahmaputra); and (c) small, mountainous river systems that sustain average accumulation rates but deliver a large fraction of low-reactivity, fossil Corg in episodic events have the highest preservation efficiencies. The global patterns of terrestrial Corg preservation reflect broadly different roles for passive and active margin systems in the sedimentary Corg cycle.
|
| [12] |
焦念志, 骆庭伟, 刘纪化, 等. 海洋负排放:基于地球系统科学思维的海洋科技变革[J]. 中国科学院院刊, 2023, 38(9):1294-1305.
|
| [13] |
|
| [14] |
|
| [15] |
Radiocarbon (Δ14C) serves as an effective tracer for identifying the origin and cycling of carbon in aquatic ecosystems. Global patterns of organic carbon (OC) Δ14C values in riverine particles and coastal sediments are essential for understanding the contemporary carbon cycle, but are poorly constrained due to under-sampling. This hinders our understanding of OC transfer and accumulation across the land–ocean continuum worldwide. Here, using machine learning approaches and >3,800 observations, we construct a high-spatial resolution global atlas of Δ14C values in river–ocean continuums and show that Δ14C values of river particles and corresponding coastal sediments can be similar or different. Specifically, four characteristic OC transfer and accumulation modes are recognized: the old–young mode for systems with low river and high coastal sediment Δ14C values; the young–old and old–old modes for coastal systems with old OC accumulation receiving riverine particles with high and low Δ14C values, respectively; and the young–young mode with young OC for both riverine and coastal deposited particles. Distinguishing these modes and their spatial patterns is critical to furthering our understanding of the global carbon system. Specifically, among coastal areas with high OC contents worldwide, old–old systems are largely neutral to slightly negative to contemporary atmospheric carbon dioxide (CO2) removal, whereas young–old and old–young systems represent CO2 sources and sinks, respectively. These spatial patterns of OC content and isotope composition constrain the local potential for blue carbon solutions.
|
| [16] |
焦念志, 张传伦, 骆庭伟, 等. 秉持三重务实理念助力全球气候治理:海洋负排放国际大科学计划的科学认知与实践路径[J]. 中国科学院院刊, 2025, 40(10):1736-1744.
|
| [17] |
|
| [18] |
For a large set of major world rivers we established the empirical relations existing between the observed organic carbon fluxes and the climatic, biologic, and geomorphologic patterns characterizing the river basins. These characteristics were extracted from various ecological databases. The corresponding carbon fluxes were taken from the literature. Dissolved organic carbon fluxes are mainly related to drainage intensity, basin slope, and the amount of carbon stored in soils. Particulate organic carbon fluxes are calculated as a function of sediment fluxes, which depend principally upon drainage intensity, rainfall intensity, and basin slope. Although the drainage intensity is mainly related to the amount of precipitation and to mean temperature in the basin, slope is also retained as one of the controlling factors. Our empirical models result in a total organic carbon flux to the oceans of about 0.38 Gt per year globally. About 0.21 Gt carbon (Gt C) enter the oceans in dissolved form and about 0.17 Gt C in particulate form. We further regionalize fluxes with respect to major climates, different continents, and different ocean basins. About 45 % of the organic carbon is discharged from tropical wet regions. The major part of the dissolved organic carbon is discharged into the Atlantic Ocean, while the bulk of the particulate organic carbon is discharged into the Indian and Pacific Oceans.
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
焦念志, 梁彦韬, 张永雨, 等. 中国海及邻近区域碳库与通量综合分析[J]. 中国科学:地球科学, 2018, 48(11):1393-1421.
|
| [24] |
赵美训, 丁杨, 于蒙. 中国边缘海沉积有机质来源及其碳汇意义[J]. 中国海洋大学学报:自然科学版, 2017, 47(9):70-76.
|
| [25] |
|
| [26] |
石学法, 吴斌, 乔淑卿, 等. 中国东部近海沉积有机碳的分布、埋藏及碳汇效应[J]. 中国科学:地球科学, 2024, 54(10):3113-3133.
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
Understanding the processes influencing the sources and fate of organic matter (OM) in estuaries is important for quantifying the contributions of carbon from land and rivers to the global carbon budget of the coastal ocean. Estuaries are sites of high OM production and processing, and understanding biogeochemical processes within these regions is key to quantifying organic carbon (Corg) budgets at the land-ocean margin. These regions provide vital ecological services, including nutrient filtration and protection from floods and storm surge, and provide habitat and nursery areas for numerous commercially important species. Human activities have modified estuarine systems over time, resulting in changes in the production, respiration, burial, and export of Corg. Corg in estuaries is derived from aquatic, terrigenous, and anthropogenic sources, with each source exhibiting a spectrum of ages and lability. The complex source and age characteristics of Corg in estuaries complicate our ability to trace OM along the river-estuary-coastal ocean continuum. This review focuses on the application of organic biomarkers and compound-specific isotope analyses to estuarine environments and on how these tools have enhanced our ability to discern natural sources of OM, trace their incorporation into food webs, and enhance understanding of the fate of Corg within estuaries and their adjacent waters.
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
葛黄敏, 张传伦,
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
To assess the influences of carbon sources and transport processes on the 14C age of organic matter (OM) in continental margin sediments, we examined a suite of samples collected along a river‐shelf‐deep ocean transect in the East China Sea (ECS). Ramped pyrolysis‐oxidiation was conducted on suspended particulate matter in the Yangtze River and on surface sediments from the ECS shelf and northern Okinawa Trough. 14C ages were determined on OM decomposition products within different temperature windows. These measurements suggest that extensive amounts of pre‐old (i.e., millennial age) organic carbon (OC) are subject to degradation within and beyond the Yangtze River Delta, and this process is accompanied by an exchange of terrestrial and marine OM. These results, combined with fatty acid concentration data, suggest that both the nature and extent of OM preservation/degradation as well as the modes of transport influence the 14C ages of sedimentary OM. Additionally, we find that the age of (thermally) refractory OC increases during across‐shelf transport and that the age offset between the lowest and highest temperature OC decomposition fractions also increases along the shelf‐to‐trough transect. Amplified interfraction spread or 14C heterogeneity is the greatest in the Okinawa Trough. Aged sedimentary OM across the transect may be a consequence of several reasons including fossil OC input, selective degradation of younger OC, hydrodynamic sorting processes, and aging during lateral transport. Consequently, each of them should be considered in assessing the 14C results of sedimentary OM and its implications for the carbon cycle and interpretation of sedimentary records.
|
| [41] |
|
| [42] |
\n Organic carbon (OC) from multiple sources can be delivered contemporaneously to aquatic sediments. The influence of different OC inputs on carbon-14–based sediment chronologies is illustrated in the carbon-14 ages of purified, source-specific (biomarker) organic compounds from near-surface sediments underlying two contrasting marine systems, the Black Sea and the Arabian Sea. In the Black Sea, isotopic heterogeneity of\n n\n -alkanes indicated that OC was contributed from both fossil and contemporary sources. Compounds reflecting different source inputs to the Arabian Sea exhibit a 10,000-year range in conventional carbon-14 ages. Radiocarbon measurements of biomarkers of marine photoautotrophy enable sediment chronologies to be constructed independent of detrital OC influences.\n
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
Large-river delta-front estuaries (LDE) are important interfaces between continents and the oceans for material fluxes that have a global impact on marine biogeochemistry. In this article, we propose that more emphasis should be placed on LDE in future global climate change research. We will use some of the most anthropogenically altered LDE systems in the world, the Mississippi/Atchafalaya River and the Chinese rivers that enter the Yellow Sea (e.g., Huanghe and Changjiang) as case-studies, to posit that these systems are both “drivers” and “recorders” of natural and anthropogenic environmental change. Specifically, the processes in the LDE can influence (“drive”) the flux of particulate and dissolved materials from the continents to the global ocean that can have profound impact on issues such as coastal eutrophication and the development of hypoxic zones. LDE also record in their rapidly accumulating subaerial and subaqueous deltaic sediment deposits environmental changes such as continental-scale trends in climate and land-use in watersheds, frequency and magnitude of cyclonic storms, and sea-level change. The processes that control the transport and transformation of carbon in the active LDE and in the deltaic sediment deposit are also essential to our understanding of carbon sequestration and exchange with the world ocean—an important objective in global change research. U.S. efforts in global change science including the vital role of deltaic systems are emphasized in the North American Carbon Plan (www.carboncyclescience.gov).
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
First-order relationships between organic matter content and mineral surface area have been widely reported and are implicated in stabilization and long-term preservation of organic matter. However, the nature and stability of organomineral interactions and their connection with mineralogical composition have remained uncertain. In this study, we find that continentally derived organic matter of pedogenic origin is stripped from smectite mineral surfaces upon discharge, dispersal, and sedimentation in distal ocean settings. In contrast, organic matter sourced from ancient rocks that is tightly associated with mica and chlorite endures in the marine realm. These results imply that the persistence of continentally derived organic matter in ocean sediments is controlled to a first order by phyllosilicate mineralogy.Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
Rivers transfer terrestrial organic carbon (OC) from mountains to ocean basins, playing a key role in the global carbon cycle. During fluvial transit, OC may be oxidized and emitted to the atmosphere as CO2or preserved and transported to downstream depositional sinks. The balance between oxidation and preservation determines the amount of particulate OC (POC) that can be buried long term, but the factors regulating this balance are poorly constrained. Here, we quantify the effects of fluvial transit on POC fluxes along an ~1,300 km lowland channel with no tributaries. We show that sediment transit time and mineral protection regulate the magnitude and rate of POC oxidation, respectively. Using a simple turnover model, we estimate that annual POC oxidation is a small percentage of the POC delivered to the river. Modelling shows that lateral erosion into POC-rich floodplains can increase POC fluxes to downstream basins, thereby offsetting POC oxidation. Consequently, rivers with high channel mobility can enhance CO2drawdown while management practices that stabilize river channels may reduce the potential for CO2drawdown.
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
Information on the age dynamics of particulate organic matter (POM) in large river systems is currently sparse and represents an important knowledge gap in our understanding of the global carbon cycle. Here we examine variations in organic geochemical characteristics of suspended sediments from the Changjiang (Yangtze River) system collected between 1997 and 2010. Higher particulate organic carbon content (POC%) values were observed in the middle reach, especially after 2003, and are attributed to the increase of in situ (aquatic) primary production associated with decreased total suspended matter concentrations. Corresponding Δ14C values from depth profiles taken in 2009 and 2010 indicate spatial and temporal variations in POC sources within the basin. Two isotopic mass balance approaches were explored to quantitatively apportion different sources of Changjiang POM. Results indicate that contributions of biomass and pre‐aged soil organic matter are dominant, regardless of hydrological conditions, with soil‐derived organic carbon comprising 17–56% of POC based on a Monte Carlo three‐end‐member mixing model. In contrast, binary mixing model calculations suggest that up to 80% of POC (2009 samples only) derived from biospheric sources. The emplacement of the Three Gorges Dam and resulting trapping of sediment from the upper reach of the watershed resulted in a modification of POM 14C ages in the reservoir. With the resulting decline in sediment load and increase in the proportion of modern POC in the lower reach, these changes in POM flux and composition of the Changjiang have significant implications for downstream carbon cycle processes.
|
| [64] |
石学法, 胡利民, 乔淑卿, 等. 中国东部陆架海沉积有机碳研究进展:来源、输运与埋藏[J]. 海洋科学进展, 2016, 34(3):313-327.
|
| [65] |
|
| [66] |
卢龙飞, 蔡进功, 包于进, 等. 粘土矿物保存海洋沉积有机质研究进展及其碳循环意义[J]. 地球科学进展, 2006, 21(9):931-937.
海洋沉积物吸附有机质的量和有机质循环周期与粘土矿物类型和吸附方式密切相关,并在全球碳循环中扮演着不同的角色。粘土吸附有机质有物理吸附和化学吸附之分,前者主要存在于粘土的微孔隙中,参与年、十年或百年尺度的循环;后者主要存在于粘土矿物层间和外表面,稳定性较好,有机质易于保存,可参与百万年或更长时间的循环,这种不同时间尺度内的碳循环,将会改写海洋沉积物有机碳“源”、“汇”的关系。不同类型粘土矿物的性质存在差异,决定了吸附有机质量的多寡,蒙脱石的吸附量远大于伊利石的吸附量,这可能是造成全球不同海域中有机碳“源”、“汇”变化的原因。海洋沉积物处于水圈、生物圈和岩石圈的交汇地带,有机碳的差异和变化,都会对全球碳循环及气候变化产生重要的影响。
|
| [67] |
|
| [68] |
|
| [69] |
The occurrence of pre-aged organic carbon (OC) in continental margin surface sediments is a commonly observed phenomenon, yet the nature, sources, and causes of this aged OC remain largely undetermined for many continental shelf settings. Here we present the results of an extensive survey of the abundance and radiocarbon content of OC in surface sediments from the northern Chinese marginal seas. Pre-aged OC is associated with both coarser (>63 µm) and finer (<63 µm) sedimentary components; measurements on specific grain-size fractions reveal that it is especially prevalent within the 20–63 µm fraction of inner shelf sediments. We suggest that organic matter associated with this sortable silt fraction is subject to protracted entrainment in resuspension-deposition loops during which it ages, is modified, and is laterally dispersed, most likely via entrainment within benthic nepheloid layers. This finding highlights the complex dynamics and predepositional history of organic matter accumulating in continental shelf sediments, with implications for our understanding of carbon cycling on continental shelves, development of regional carbon budgets, and interpretation of sedimentary records.
|
| [70] |
|
| [71] |
Diagenetic alteration of magnetic minerals occurs in all sedimentary environments and tends to be severe in reducing environments. Magnetic minerals provide useful information about sedimentary diagenetic processes, which makes it valuable to use magnetic properties to identify the diagenetic environment in which the magnetic minerals occur and to inform interpretations of paleomagnetic recording or environmental processes. We use a newly developed first‐order reversal curve unmixing method on well‐studied samples to illustrate how magnetic properties can be used to assess diagenetic processes in reducing sedimentary environments. From our analysis of multiple data sets, consistent magnetic components are identified for each stage of reductive diagenesis. Relatively unaltered detrital and biogenic magnetic mineral assemblages in surficial oxic to manganous diagenetic environments undergo progressive dissolution with burial into ferruginous and sulfidic environments and largely disappear at the sulfate‐methane transition. Below the sulfate‐methane transition, a weak superparamagnetic to largely noninteracting stable single domain (SD) greigite component is observed in all studied data sets. Moderately interacting stable SD authigenic pyrrhotite and strongly interacting stable SD greigite are observed commonly in methanic environments. Recognition of these characteristic magnetic components enables identification of diagenetic processes and should help to constrain interpretation of magnetic mineral assemblages in future studies. A key question for future studies concerns whether stable SD greigite forms in the sulfidic or methanic zones, where formation in deeper methanic sediments will cause greater delays in paleomagnetic signal recording. Authigenic pyrrhotite forms in methanic environments, so it will usually record a delayed paleomagnetic signal.
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
贺行良, 谭丽菊, 段晓勇, 等. 杭州湾沉积物中硫酸盐—甲烷转换带内的碳循环[J]. 海洋地质与第四纪地质, 2020, 40(3):51-60.
|
| [78] |
Shelf seas are experiencing a rise in shallow gas leaks, primarily methane, raising concerns due to their environmental impact. However, the effect of the leaks on early diagenesis remains poorly understood. This study analyzes sediment lithology, organic geochemistry and porewater geochemistry of two short cores collected nearby the pockmarks in the muddy inner shelf of the East China Sea. Our findings clearly demonstrate the impact of methane leakage on early diagenesis, evidenced by the shallower position of the SMTZ (sulfate-methane transition zone), higher concentrations of uranium (U), vanadium (V), and manganese (Mn) in the porewater near and above the SMTZ, and downcore decrease in Mg2+, Ca2+, and Sr2+ concentrations versus increase in Mg2+/Ca2+ and Sr2+/Ca2+ ratios. Their profile variations and the difference between two cores are determined by the intensity of methane leakage. The estimated methane diffusive flux of 619 mmol m-2 yr-1 at YEC7–2 is roughly 8.5 times that at YEC7–1 (73 mmol m-2 yr-1), consistent with a shorter distance of YEC7–2 to the pockmark with active methane leakage. A schematic model is summarized to demonstrate the response of early diagenesis processes to the increasing methane leakages in response to changing sedimentation regimes from accretion to severe erosion. This study undoubtedly improves our understanding mutual promotion effect between seafloor erosion and gas leakage, and their impact on early diagenesis processes and resultant porewater geochemical changes and authigenic mineral records.
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
程南宁, 左倬, 梅生成, 等. 利用疏浚土塑造长江口新横沙生态成陆示范区研究[J]. 人民长江, 2021, 52(6):25-29.
|
| [87] |
Bottom trawling and use of other mobile fishing gear have effects on the seabed that resemble forest clearcutting, a terrestrial disturbance recognized as a major threat to biological diversity and economic sustainability. Structures in marine benthic communities are generally much smaller than those in forests, but structural complexity is no less important to their biodiversity. Use of mobile fishing gear crushes, buries, and exposes marine animals and structures on and in the substratum, sharply reducing structural diversity. Its severity is roughly comparable to other natural and anthropogenic marine disturbances. It also alters biogeochemical cycles, perhaps even globally. Recovery after disturbance is often slow because recruitment is patchy and growth to maturity takes years, decades, or more for some structure‐forming species. Trawling and dredging are especially problematic where the return interval—the time from one dredging or trawling event to the next—is shorter than the time it takes for the ecosystem to recover; extensive areas can be trawled 100–700% per year or more. The effects of mobile fishing gear on biodiversity are most severe where natural disturbance is least prevalent, particularly on the outer continental shelf and slope, where storm‐wave damage is negligible and biological processes, including growth, tend to be slow. Recent advances in fishing technology (e.g., rockhopper gear, global positioning systems, fish finders) have all but eliminated what were de facto refuges from trawling. The frequency of trawling (in percentage of the continental shelf trawled per year) is orders of magnitude higher than other severe seabed disturbances, annually covering an area equivalent to perhaps half of the world’s continental shelf, or 150 times the land area that is clearcut yearly. Mobile fishing gear can have large and long‐lasting effects on benthic communities, including young stages of commercially important fishes, although some species benefit when structural complexity is reduced. These findings are crucial for implementation of “Essential Fish Habitat” provisions of the U.S. Magnuson‐Stevens Fishery Conservation and Management Act which aim to protect nursery and feeding habitat for commercial fishes. Using a precautionary approach to management, modifying fishing methods, and creating refuges free of mobile fishing gear are ways to reduce effects on biological diversity and commercial fish habitat.
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
Bottom trawls impact the seafloor and benthic ecosystem. One of the direct physical impacts is the mobilization of sediment in the wake of trawl gear components that are in contact with or are close to the seabed. The quantity of sediment mobilized is related to the hydrodynamic drag of the gear components and the type of sediment over which they are trawled. Here we present a methodology to estimate the sediment mobilization from hydrodynamic drag. The hydrodynamic drag of individual gear components is estimated using empirical measurements of similarly shaped objects, including cylinders, cubes, and nets. The method is applied to beam trawls used in the Dutch North Sea flatfish fishery and validated using measurements of beam trawl drag from the literature. Netting contributes most to the hydrodynamic drag of pulse trawls, while the tickler chains and chain mat comprise most of the hydrodynamic drag of conventional beam trawls. Taking account of the silt content of the areas trawled and the number of different beam trawl types used by the fleet, sediment mobilization is estimated as 9.2 and 5.3 kg m−2 for conventional 12 m beam and pulse trawls, respectively, and 4.2 and 4.3 kg m−2 for conventional 4.5 m beam and pulse trawls.
|
| [94] |
Bottom trawling represents the most widespread anthropogenic physical disturbance to seafloor sediments on continental shelves. While trawling-induced changes to benthic ecology have been widely recognized, the impacts on long-term organic carbon storage in marine sediments remains uncertain. Here we combined datasets of sediment and bottom trawling for a heavily trawled region, the North Sea, to explore their potential mutual dependency. A pattern emerges when comparing the surface sediment organic carbon-to-mud ratio with the trawling intensity represented by the multi-year averaged swept area ratio. The organic carbon-to-mud ratio exhibits a systematic response to trawling where the swept area ratio is larger than 1 yr−1. Three-dimensional physical–biogeochemical simulation results suggest that the observed pattern is attributed to the correlated dynamics of mud and organic carbon during transport and redeposition in response to trawling. Both gain and loss of sedimentary organic carbon may occur in weakly trawled areas, whereas a net reduction of sedimentary organic carbon is found in intensely trawled grounds. Cessation of trawling allows restoration of sedimentary carbon stock and benthic biomass, but their recovery occurs at different timescales. Our results point out a need for management of intensely trawled grounds to enhance the CO2 sequestration capacity in shelf seas.
|
| [95] |
|
| [96] |
|
| [97] |
Subtidal marine sediments are one of the planet's primary carbon stores and strongly influence the oceanic sink for atmospheric CO. By far the most widespread human activity occurring on the seabed is bottom trawling/dredging for fish and shellfish. A global first-order estimate suggested mobile demersal fishing activities may cause 0.16-0.4 Gt of organic carbon (OC) to be remineralized annually from seabed sediment carbon stores (Sala et al., 2021). There are, however, many uncertainties in this calculation. Here, we discuss the potential drivers of change in seabed sediment OC stores due to mobile demersal fishing activities and conduct a literature review, synthesizing studies where this interaction has been directly investigated. Under certain environmental settings, we hypothesize that mobile demersal fishing would reduce OC in seabed stores due to lower production of flora and fauna, the loss of fine flocculent material, increased sediment resuspension, mixing and transport and increased oxygen exposure. Reductions would be offset to varying extents by reduced faunal bioturbation and community respiration, increased off-shelf transport and increases in primary production from the resuspension of nutrients. Studies which directly investigated the impact of demersal fishing on OC stocks had mixed results. A finding of no significant effect was reported in 61% of 49 investigations; 29% reported lower OC due to fishing activities, with 10% reporting higher OC. In relation to remineralization rates within the seabed, four investigations reported that demersal fishing activities decreased remineralization, with three reporting higher remineralization rates. Patterns in the environmental and experimental characteristics between different outcomes were largely indistinct. More evidence is urgently needed to accurately quantify the impact of anthropogenic physical disturbance on seabed carbon in different environmental settings and to incorporate full evidence-based carbon considerations into global seabed management.© 2022 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
|
| [98] |
|
| [99] |
于雷, 李三忠, 索艳慧, 等. 海岸海洋碳循环过程与CO2负排放[J]. 海洋学研究, 2023, 41(1):14-25.
海岸海洋接受大量来自陆源的碳物质和营养盐,涉及大量以碳为中心的相互作用,是重要的碳循环海域;同时,该区域也常发育具有良好圈闭条件的储-盖系统,具有明显的CO<sub>2</sub>储集潜力。该文以海岸海洋及其下发育的沉积盆地为研究对象,综述了碳物质在海岸海洋中的循环过程、CO<sub>2</sub>通量的影响因素和海岸海洋沉积盆地的储碳机理。从“双碳”角度,重点论述了海岸海洋在促进CO<sub>2</sub>负排放方面的意义、促进海洋负碳排放的潜在途径和在沉积盆地的储碳潜力及面临的问题。海岸海洋是重要的碳汇区域之一,高效率的微生物碳泵和碳酸盐碳泵是增强海岸海洋CO<sub>2</sub>负排放的核心过程;同时,海岸海洋沉积盆地中的储-盖系统,不但提供了额外的CO<sub>2</sub>封存空间,也保障了CO<sub>2</sub>封存的安全性。未来的研究应以抑制海岸海洋中碳物质向CO<sub>2</sub>转化的进程和保障沉积储层中CO<sub>2</sub>封存的安全性为主要方向,为CO<sub>2</sub>负排放提供理论依据与技术保障。
|
| [100] |
|
| [101] |
|
| [102] |
|
/
| 〈 |
|
〉 |