Study on mineralogy, geochemistry and original environment of initial polymetallic oxides from the Challenger Deep, Mariana Trench

WANG Hai-feng, LAI Pei-xin, DENG Xi-guang, WANG Fen-lian, YANG Yong, Deng Yi-lan, HE Gao-wen

Journal of Marine Sciences ›› 2019, Vol. 37 ›› Issue (1) : 21-29.

PDF(2168 KB)
PDF(2168 KB)
Journal of Marine Sciences ›› 2019, Vol. 37 ›› Issue (1) : 21-29. DOI: 10.3969/j.issn.1001-909X.2019.01.004

Study on mineralogy, geochemistry and original environment of initial polymetallic oxides from the Challenger Deep, Mariana Trench

  • WANG Hai-feng, LAI Pei-xin, DENG Xi-guang, WANG Fen-lian, YANG Yong, Deng Yi-lan, HE Gao-wen
Author information +
History +

Abstract

Three special polymetallic oxides were taken from the Challenger Deep of Mariana Trench. They were at the initial stage compared to the normal polymetallic nodules. Samples were taken for mineralogical and geochemical analyses, such as X-ray diffraction(XRD) and Mossbauer spectra. Major, trace and rare earth elements(REE) were also measured for all the samples. The results showed that: (1)Compared to the normal polymetallic nodules, the mineralogy of samples were dominated by quartz, plagioclase and clay minerals, but vernadite and todorokite were deficient, which were often seen in polymetallic nodules. (2)Data obtained by Mossbauer spectra indicated that the iron phases were akaganeite(91.6%) and lepidocrocite(8.4%), we suggested it was due to the transmutation from lepidocrocite to akaganeite, a more stable mineral. (3)Higher contents of SiO2 and Al2O3 were found in the samples, but lower contents of Mn, Fe, Cu, Co, Ni in contrast. They were caused by the contamination of pelagic clay and short duration of sorption. (4)Due to the short time for absorption, value of ΣREE was about 0.4×10-3 in the samples, consumedly lower than that in the normal nodules, of which ΣREE content was usually higher than 1.0×10-3. The absent of the positive Ce anomaly was due to the reducing bottom-water redox condition and the active hydrothermal fluid.

Key words

polymetallic oxides / mineralogy / geochemistry / Mariana Trench

Cite this article

Download Citations
WANG Hai-feng, LAI Pei-xin, DENG Xi-guang, WANG Fen-lian, YANG Yong, Deng Yi-lan, HE Gao-wen. Study on mineralogy, geochemistry and original environment of initial polymetallic oxides from the Challenger Deep, Mariana Trench[J]. Journal of Marine Sciences. 2019, 37(1): 21-29 https://doi.org/10.3969/j.issn.1001-909X.2019.01.004

References

[1] HART S R, GLASSLEY W E, KARIG D E. Basalts and sea floor spreading behind the Mariana Island Arc[J]. Earth and Planetary Science Letters, 1972, 15(1):12-18.
[2] JURDY D M, STEFANICK M. Flow models for backarc spreading[J]. Tectonophysics, 1983, 99: 191-206.
[3] GRIBBLE R F, STERN R J, BLOOMER S H, et al. MORB mantle and subduction components interact to generate basalts in the southern Mariana Trough backarc basin[J]. Geochimica et Cosmochimica Acta,1996, 60(12): 2 153-2 166.
[4] LIU Xin, LI San-zhong, ZHAO Shu-juan, et al. Structure of the Mariana subduction system[J]. Earth Science Frontiers, 2017, 24(4): 329-340.
刘鑫,李三忠,赵淑娟,等. 马里亚纳俯冲系统的构造特征[J]. 地学前缘, 2017, 24(4): 329-340.
[5] JAMIESON A J, FUJII T, MAYOR D J, et al. Hadal trenches: the ecology of the deepest places on Earth[J]. Trends in Ecology & Evolution, 2010, 25(3): 190-197.
[6] LIU Fang-lan, QU Jia. Seafloor topography and bathymetric survey of the Challenger Deep of Mariana Trench[J]. Marine Geology Frontier, 2013, 29(4): 7-11.
刘方兰,曲佳. 马里亚纳海沟水深探测及“挑战者深渊”海底地形特征[J]. 海洋地质前沿, 2013, 29(4): 7-11.
[7] LUO Ming, GIESKES J, CHEN Lin-ying, et al. Provenances, distribution, and accumulation of organic matter in the southern Mariana Trench rim and slope: Implication for carbon cycle and burial in hadal trenches[J]. Marine Geology, 2017, 386(1): 98-106.
[8] LUO Ming, ALGEO T J, TONG Hong-peng, et al. More reducing bottom-water redox conditions during the Last Glacial Maximum in the southern Challenger Deep (Mariana Trench, western Pacific) driven by enhanced productivity[J]. Deep-Sea Research II, 2018, 155:70-82.
[9] NATH B, BALARAM V, SUDHAKAR M, et al. Rare earth element geochemistry of ferromanganese deposits from the Indian Ocean[J]. Marine Chemistry, 1992, 38(3-4):185-208.
[10] KNOOP P, OWEN R, MORGAN C. Regional variability in ferromanganese nodule composition: Northeastern tropical Pacific Ocean[J]. Marine Geology, 1998, 147(1-4):1-12.
[11] ZHU Ke-chao, LI Zhen-shao, HE Gao-wen, et al. The mineral resources of polymetallic nodules in the eastern Pacific Ocean[M]. Beijing: Geological Publishing House, 2001.
朱克超,李振韶,何高文,等. 东太平洋多金属结核矿产[M].北京:地质出版社, 2001.
[12] BAYON G, GERMAN C, BURTON K, et al. Sedimentary Fe-Mn oxyhydroxides as paleoceanographic archives and the role of aeolian flux in regulating oceanic dissolved REE[J]. Earth and Planetary Science Letter, 2004, 224(3-4):477-492.
[13] HE Gao-wen, SUN Xiao-ming, XUE Ting. A comparative study of the geology, geochemistry and metallogenetic mechanism of polymetallic nodules and cobalt-rich crusts from the Pacific Ocean[M]. the Frist Edition. Beijing: Geological Publishing House, 2011.
何高文,孙晓明,薛婷. 太平洋多金属结核核富钴结壳地质地球化学特征与成矿机制对比[M]. 第1版.北京:地质出版社,2011.
[14] BIDHURANJAN N, SWAPAN K D, KALYAN K B. Detrital and authigenic baddeleyite(ZrO2)in ferromanganese nodules of Central Indian Ocean Basin[J].Geoscience Frontiers, 2011, 2(4): 571-576.
[15] LIU Xin-bo. Study on mineralogy and geochemistry of polymetallic nodules from the Central and Eastern Pacific Ocean[D]. Qingdao:Ocean University of China, 2005.
刘新波. 太平洋中部多金属结核矿物地球化学研究[D]. 青岛:中国海洋大学,2005.
[16] Van der WEIJDEN C, KURISSINK E. Some geochemical controls on Lead and Barium concentrations in ferromanganese deposits[J]. Marine Chemistry, 1977, 5(2): 93-112.
[17] MOORE W S, KU T L, MACDOUGALL J D, et al. Fluxes of metals to a manganese nodule radiochemical, chemical, structural, and mineralogical studies[J]. Earth and Planetary Science Letter, 1981, 52(1): 151-171.
[18] LEI G B, BOSTROM K. Mineralogical control on transition metal distributions in marine manganese nodules[J]. Marine Geology, 1995, 123(3-4): 253-261.
[19] SZYMANSKI W, SKIBA M, BLACHOWSKI A. Mineralogy of Fe-Mn nodules in Albeluvisols in the Carpathian Foothills, Poland[J]. Geoderma, 2014, 217-218: 102-110.
[20] WANG Hai-feng, LIU Yong-gang, ZHU Ke-chao. Mineral resource distribution of polymetallic nodules from the Central Pacific Basin and characteristics comparison with nodules from China Pioneer Area, CC Zone[J]. Marine Geology & Quaternary Geology, 2015, 35(2): 73-79.
王海峰,刘永刚,朱克超. 中太平洋海盆多金属结核分布及其与CC区中国多金属结核开辟区多金属结核特征对比[J]. 海洋地质与第四纪地质,2015, 35(2): 73-79.
[21] WANG Hai-feng, ZHU Ke-chao, DENG Xi-guang. Sedimentary geological characteristic of Core JL7KBC03 from Mariana Trench[J]. Geology Review, 2015,61(S): 914-915.
王海峰,朱克超,邓希光. 马里亚纳海沟JL7KBC03短柱沉积地质特征[J]. 地质论评,2015,61(S): 914-915.
[22] WANG Hai-feng, WANG Fen-lian, ZHU Ke-chao, et al. Depositional envirnoment and origin of buried pollymetallic nodules of piston core WPC1101 from CC Zone, Eastern Pacific[J]. Marine Geology Frontier, 2016, 32(11): 1-11.
王海峰,王汾连,朱克超,等. 东太平洋CC区WPC1101柱样沉积环境及埋藏多金属结核成因探讨[J]. 海洋地质前沿,2016, 32(11): 1-11.
[23] LOUGEAR A, KONIG I, TRAUTWEIN A X, et al. Mossbauer investigations to characterize Fe lattice sites in sheet silicates and Peru Basin deep-sea sediments[J]. Deep-Sea Research, 2001, 48(17-18): 3 701-3 711.
[24] MARCUS A M, EDWARDS K J, GUEGUEN B, et al. Iron mineral structure, reactivity, and isotopic composition in a South Pacific Gyre ferromanganese nodule over 4Ma[J]. Geochimica et Cosmochimica Acta, 2015, 171(15): 61-79.
[25] CARPENTER R, WAKEHAM S. Mossbauer studies of marine and fresh water manganese nodules[J]. Chemical Geology, 1973, 11(2): 109-116.
[26] JOHNSTON J H, GLASBY G P. A Mossbauer spectroscopic and X-ray diffraction study of the iron mineralogy of some sediments from the Southwestern Pacific Basin[J]. Marine Chemistry, 1982, 11(5): 437-448.
[27] REN Jiang-bo, YAO Hui-qiang, ZHU Ke-chao, et al. Enrichment mechanisms of rare earth elements and yttrium for Deep-sea mud from Clarion-Clipperton Region, East Pacific Ocean[J]. Earth Science Frontiers, 2015, 22(4): 200-211.
任江波,姚会强,朱克超,等. 稀土元素及钇在东太平洋CC区深海泥中的富集特征及机制[J]. 地学前缘,2015, 22(4): 200-211.
[28] ZHU Ke-chao, REN Jiang-bo, WANG Hai-feng, et al. The enrichment mechanism of REY and geochemical characteristics of REY-rich pelagic clay from the central Pacific[J]. Earth Science: Journal of China University of Geosciences, 2015, 40(6): 1 052-1 060.
朱克超,任江波,王海峰,等. 太平洋中部富REY的深海粘土的地球化学特征及REY富集机制[J]. 地球科学:中国地质大学学报,2015, 40(6): 1 052-1 060.
[29] WANG Fen-lian, HE Gao-wen, WANG Hai-feng, et al. Geochemistry of rare earth elements in a core from Marina Trench and its significance[J]. Marine Geology & Quaternary Geology, 2016, 36(4): 67-75.
王汾连,何高文,王海峰,等. 马里亚纳海沟柱状沉积物稀土地球化学特征及其指示意义[J]. 海洋地质与第四纪地质,2016, 36(4): 67-75.
[30] HUANG Yong-yang, YANG Hui-ning, ZHU Ke-chao, et al. Controlling of the formation and distribution for polymetallic nodules by the seafloor sediment type and its geochemical environment[M]. Wuhan: China University of Geosciences Press, 1997.
黄永样,杨慧宁,匡耀求,等. 海底沉积物类型及其地球化学特征对多金属结核形成与分布的控制作用[M].武汉:中国地质大学出版社,1997.
[31] ELDERFIELD H, HAWKESWORTH C J, GREAVES M J, et al. Rare earth element geochemistry of oceanic ferromanganese nodules and associated sediments[J]. Geochimica et Cosmochim Acta, 1981, 45(4): 518-523.
[32] XU Dong-yu. The polymetallic nodules and its formation environment in the Central Pacific[M]. Beijing: Geological Publishing House: 1993.
许东禹. 多金属结核的特征及成因[M].北京:地质出版社,1993.
[33] JAMES R H, MARJORIE S S, RACHEL E D, et al. Diffuse flow hydrothermal manganese mineralization along the active Mariana and southern Izu-Bonin arc system, western Pacific[J]. Journal of Geophysical Research, 2008, 117(B08S14): 1-29.
[34] ASTAKHOVA N V, SATTAROVA V V. The REE species and their distribution in ferromanganese crusts in the sea of Japan[J]. Russian Geology and Geophysics, 2012, 53(7): 649-656.
[35] MIKHAILIK P E, MIKHAILIK E V, ZARUBINA N V, et al. Distribution of rare-earth elements and yttrium in hydrothermal sedimentary ferromanganese crusts of the Sea of Japan(from phase analysis results)[J]. Russian Geology and Geophysics, 2017, 58(12): 1 530-1 542.
PDF(2168 KB)

Accesses

Citation

Detail

Sections
Recommended

/