Coupled atmosphere and wave model and its application in an idealized typhoon

WU Zhi-yuan, JIANG Chang-bo, HE Zhi-yong, CHEN Jie, DENG Bin, XIE Zhen-dong

Journal of Marine Sciences ›› 2019, Vol. 37 ›› Issue (2) : 9-15.

PDF(4812 KB)
PDF(4812 KB)
Journal of Marine Sciences ›› 2019, Vol. 37 ›› Issue (2) : 9-15. DOI: 10.3969/j.issn.1001-909X.2019.02.002

Coupled atmosphere and wave model and its application in an idealized typhoon

  • WU Zhi-yuan1,2,3, JIANG Chang-bo*1,2, HE Zhi-yong1, CHEN Jie1,2, DENG Bin1,2, XIE Zhen-dong1
Author information +
History +

Abstract

In the previous studies, some traditional theoretical models and empirical models were used to construct the typhoon dynamic field, and the typhoon wind field and pressure field were used to drive the wave model. It could not reflect the sea-air dynamic process induced by typhoon and it was difficult to provide high-precision wind and pressure field data for the wave model. In order to solve this problem, a mesoscale meteorological model (WRF) and the third-generation wave model (SWAN) had been used to construct a two-way coupled atmosphere-wave model. This coupled model had been applied to the simulation of an idealized typhoon. The results show that the coupled WRF-SWAN model can successfully simulate the distribution of typhoon waves induced by an ideal typhoon and reveal the spatially asymmetric distribution called right side enhancement of typhoon wind field and waves field. This coupled atmosphere-wave model can be further promoted for simulation analysis of actual typhoon.

Key words

typhoon waves / numerical simulation / coupled atmosphere-wave model / real-time two-way coupled model

Cite this article

Download Citations
WU Zhi-yuan, JIANG Chang-bo, HE Zhi-yong, CHEN Jie, DENG Bin, XIE Zhen-dong. Coupled atmosphere and wave model and its application in an idealized typhoon[J]. Journal of Marine Sciences. 2019, 37(2): 9-15 https://doi.org/10.3969/j.issn.1001-909X.2019.02.002

References

[1] WU Zhi-yuan, JIANG Chang-bo, DENG Bin, et al. Simulation of the storm surge in the South China Sea based on the coupled sea-air model[J]. Chin Sci Bull, 2018, 63(11): 3 494-3 504.
伍志元, 蒋昌波, 邓斌, 等. 基于海气耦合模式的南中国海北部风暴潮模拟[J]. 科学通报, 2018, 63(11): 3 494-3 504.
[2] WU Zhi-yuan, JIANG Chang-bo, DENG Bin, et al. Sensitivity of different parameterization schemes on Typhoon Kai-tak prediction based on the WRF model[J]. Journal of Marine Science, 2019, 37(1): 1-8.
伍志元, 蒋昌波, 邓斌, 等. WRF模式中台风“启德”模拟对参数化方案的敏感性分析[J]. 海洋学研究, 2019, 37(1):1-8
[3] ZHOU Liang-ming, LI Zhan-bin, MOU Lin, et al. Numerical simulation of wave field in the South China Sea using WAVEWATCH III[J]. Chinese Journal of Oceanology and Limnology, 2014, 32(3): 656-664.
[4] NAYAK S, BHASKARAN P K. Coastal vulnerability due to extreme waves at Kalpakkam based on historical tropical cyclones in the Bay of Bengal[J]. International Journal of Climatology, 2014, 34(5): 1 460-1 471.
[5] YUK J H, KIM K O, LEE H S, et al. Simulation of storm surge and wave due to typhoon Isewan (5915)[J]. China Ocean Engineering, 2015, 29(4): 473-488.
[6] DROST E J F, LOWE R J, IVEY G N, et al. The effects of tropical cyclone characteristics on the surface wave fields in Australia's North West region[J]. Continental Shelf Research, 2017, 139: 35-53.
[7] YIN Kai, XU Su-dong, HUANG Wen-rui, et al. Effects of sea level rise and typhoon intensity on storm surge and waves in Pearl River Estuary[J]. Ocean Engineering, 2017, 136: 80-93.
[8] KIM S, MORI N, MASE H, et al. The role of sea surface drag in a coupled surge and wave model for Typhoon Haiyan 2013[J]. Ocean Modelling, 2015, 96: 65-84.
[9] WU Zhi-yuan, JIANG Chang-bo, DENG Bin, et al. SWAN-ROMS coupling model and its application in the idealized tidal inlet[J]. Journal of Harbin Engineering University, 2019, 40(8):1 420-1 426.
伍志元, 蒋昌波, 邓斌, 等. 波流耦合模式及其在理想潮汐通道中的应用[J].哈尔滨工程大学学报, 2019, 40(8):1 420-1 426.
[10] WU Zhi-yuan, JIANG Chang-bo, DENG Bin, et al. Evaluation of numerical wave model for typhoon wave simulation in South China Sea[J]. Water Science and Engineering, 2018, 11(3): 229-235.
[11] LIU Cheng, ZHENG Chong-wei, LI Rong-bo, et al. Statistics analysis of big wave frequency and extreme wave height in the East China Sea[J]. Marine Forecasts, 2014, 31(2):8-13.
刘成, 郑崇伟, 李荣波,等. 东中国海大浪频率和极值波高统计分析[J]. 海洋预报, 2014, 31(2):8-13.
[12] HAN Shu-zong, SHI Yu-jiao. The distributional character of typhoon waves in the East China Sea[J]. Periodical of Ocean University of China, 2013, 43(10): 1-7.
韩树宗, 史玉姣. 东中国海台风浪分布特征研究[J]. 中国海洋大学学报:自然科学版, 2013, 43(10): 1-7.
[13] ZONG Fang-yi, WU Ke-jian. Research on distributions and variations of wave energy in South China Sea Based on recent 20 years' wave simulation results using Swan Wave Model[J]. Transactions of Oceanology and Limnology, 2014(3):1-12.
宗芳伊, 吴克俭. 基于近20年的SWAN模式海浪模拟结果的南海波浪能分布、变化研究[J]. 海洋湖沼通报, 2014(3):1-12.
[14] LIANG Shu-xiu, SUN Zhao-chen, YIN Hong-qiang, et al. Influence factors of typhoon wave forecast in the South Sea by SWAN Model[J]. Advances in Marine Science, 2015, 33(1):19-30.
梁书秀, 孙昭晨, 尹洪强,等. 基于SWAN模式的南海台风浪推算的影响因素分析[J]. 海洋科学进展, 2015, 33(1):19-30.
[15] YING Wang-min, ZHENG Qiao, ZHU Chen-chen, et al. Numerical simulation of “CHAN-HOM” typhoon waves using SWAN model[J]. Marine Sciences, 2017, 41(4): 108-117.
应王敏, 郑桥, 朱陈陈, 等. 基于 SWAN 模式的 “灿鸿” 台风浪数值模拟[J]. 海洋科学, 2017, 41(4): 108-117.
[16] SUN Rui, HOU Yi-jun, LI Jian, et al. The simulation of a typhoon wave in the northern part of the South China Sea[J]. Marine Sciences, 2013, 37(12):76-83.
孙瑞, 侯一筠, 李健,等. 南海北部一次台风浪过程的数值模拟[J]. 海洋科学, 2013, 37(12):76-83.
[17] WU Hai-lang, CHEN Xi, CHEN Xu-jun, et al. The numerical simulation and analysis of the Suao Harbor's typhoon wave[J]. Journal of Xiamen University: Natural Science , 2015, 54(2):207-215.
武海浪, 陈希, 陈徐均,等. 台湾苏澳港台风浪数值模拟与分析[J]. 厦门大学学报:自然科学版, 2015, 54(2):207-215.
[18] YUAN Kai-rui, SHANG Shao-ping, XIE Yan-shuang, et al. The simulation of typhoon waves in Taiwan Strait[J]. Journal of Xiamen University: Natural Science , 2014, 53(3):413-417.
袁凯瑞, 商少平, 谢燕双,等. 台湾海峡台风浪的数值模拟[J]. 厦门大学学报:自然科学版, 2014, 53(3):413-417.
[19] WANG Ya-nan, WANG Qing-yuan, LIU Bin-xian. The ensemble wave forecast and test of cold air wave by using SWAN model in the Bohai Sea and the Yellow Sea[J]. Acta Oceanologica Sinica, 2015, 37(9):10-16.
王亚男, 王庆元, 刘彬贤. 黄、渤海冷空气海浪场的集合预报试验[J].海洋学报, 2015, 37(9):10-16.
[20] LI Da-ming, LI Yang-yang, PAN Fan. Coupling model of 2-D variable zone storm surge and waves for Bohai Bay[J]. Journal of Shanghai Jiaotong University, 2015, 49(5):730-736.
李大鸣, 李杨杨, 潘番. 渤海湾二维温带风暴潮与波浪耦合数学模型[J].上海交通大学学报, 2015, 49(5):730-736.
[21] LIU Shou-hua, YANG Zhong-liang, YUE Xin-yang, et al. Wave energy resource assessment in Shandong offshore[J]. Acta Oceanologica Sinica, 2015, 37(7): 108-122.
刘首华, 杨忠良, 岳心阳,等. 山东省周边海域波浪能资源评估[J]. 海洋学报, 2015, 37(7):108-122.
[22] WARNER J C, ARMSTRONG B, HE R, et al. Development of a coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system[J]. Ocean Modelling, 2010, 35(3): 230-244.
[23] KUMAR N, VOULGARIS G, WARNER J C, et al. Implementation of the vortex force formalism in the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system for inner shelf and surf zone applications[J]. Ocean Modelling, 2012, 47: 65-95.
[24] ZAMBON J B, HE R, WARNER J C. Investigation of hurricane Ivan using the coupled ocean-atmosphere-wave-sediment transport (COAWST) model[J]. Ocean Dynamics, 2014, 64(11): 1 535-1 554.
[25] LIU Bin, LIU Hui-qing, XIE Lian, et al. A coupled atmosphere-wave-ocean modeling system: Simulation of the intensity of an idealized tropical cyclone[J]. Monthly Weather Review, 2011, 139(1): 132-152.
[26] BENNETT V C C, MULLIGAN R P. Evaluation of surface wind fields for prediction of directional ocean wave spectra during Hurricane Sandy[J]. Coastal Engineering, 2017, 125: 1-15.
[27] LAPRISE R. The Euler equations of motion with hydrostatic pressure as an independent variable[J]. Monthly Weather Review, 1992, 120(1): 197-207.
[28] ROGERS W E, HWANG P A, WANG D W. Investigation of wave growth and decay in the SWAN model: three regional-scale applications[J]. Journal of Physical Oceanography, 2003, 33(2): 366-389.
[29] LARSON J, JACOB R, ONG E. The model coupling toolkit: a new Fortran 90 toolkit for building multiphysics parallel coupled models[J]. The International Journal of High Performance Computing Applications, 2005, 19(3): 277-292.
PDF(4812 KB)

Accesses

Citation

Detail

Sections
Recommended

/