Journal of Marine Sciences ›› 2023, Vol. 41 ›› Issue (2): 14-27.DOI: 10.3969/j.issn.1001-909X.2023.02.002
Previous Articles Next Articles
YU Jie1,2(), ZHANG Han1,2,3,*(), CHEN Dake1,2,3,4
Received:
2022-05-20
Revised:
2022-08-31
Online:
2023-06-15
Published:
2023-07-27
CLC Number:
YU Jie, ZHANG Han, CHEN Dake. Upper ocean response to super typhoon Rammasun(2014) based on Argo data in the South China Sea[J]. Journal of Marine Sciences, 2023, 41(2): 14-27.
Add to citation manager EndNote|Ris|BibTeX
URL: http://hyxyj.sio.org.cn/EN/10.3969/j.issn.1001-909X.2023.02.002
Fig.1 Track of super typhoon Rammasun (The black line represents typhoon’s track,the black plus signs represent positions of Argo at the typhoon’s arrival, the blue plus sign represents position of the moored buoy at the typhoon’s arrival.)
Fig.2 South China Sea daily SST observed by satellite from 15th to 20th of July (The black point represents the typhoon’s location at 12:00 UTC, the black line represents typhoon’s track, the following figures are the same.)
Fig.4 Temperature profile observed by Argo from 13th to 30th of July (a-e) and distribution of Argo (f) (The numbers in brackets represent the days relative to the passage of the typhoon’s center,negative means before the typhoon’s arrival and positive means after the typhoon’s passage.)
Argo | 台风过境前 | 台风过境后 | |||
---|---|---|---|---|---|
等温层 深度/m | 等温层 温度/℃ | 等温层 深度/m | 等温层 温度/℃ | ||
A1(5903455)① | 41.3 | 29.739 | 21.1 | 29.100 | |
A3(2901469) | 31.1 | 29.992 | 51.1 | 29.025 | |
A4(5903454) | 18.7 | 30.477 | 44.8 | 29.130 | |
A5(5902165) | 21.2 | 30.774 | 24.7 | 29.482 |
Tab.1 The changes of isothermal layer depth and temperature caused by typhoon (forcing phase)
Argo | 台风过境前 | 台风过境后 | |||
---|---|---|---|---|---|
等温层 深度/m | 等温层 温度/℃ | 等温层 深度/m | 等温层 温度/℃ | ||
A1(5903455)① | 41.3 | 29.739 | 21.1 | 29.100 | |
A3(2901469) | 31.1 | 29.992 | 51.1 | 29.025 | |
A4(5903454) | 18.7 | 30.477 | 44.8 | 29.130 | |
A5(5902165) | 21.2 | 30.774 | 24.7 | 29.482 |
Fig.6 Salinity profile observed by Argo from 13th to 30th of July (a-e) and distribution of Argo (f) (The numbers in brackets represent the days relative to the passage of the typhoon’s center,negative means before the typhoon’s arrival and positive means after the typhoon’s passage.)
Argo | 台风过境前 | 台风过境后 | |||
---|---|---|---|---|---|
混合层 深度/m | 障碍层 厚度/m | 混合层 深度/m | 障碍层 厚度/m | ||
A1(5903455) | 16.1 | 25.2 | 16.6 | 4.5 | |
A3(2901469) | 25.3 | 5.8 | 35.4 | 15.7 | |
A4(5903454) | 18.7 | 0.0 | 30.9 | 13.9 | |
A5(5902165) | 16.0 | 5.2 | 24.7 | 0 |
Tab.2 Changes of mixed layer depth and barrier layer thickness caused by typhoon (forcing phase)
Argo | 台风过境前 | 台风过境后 | |||
---|---|---|---|---|---|
混合层 深度/m | 障碍层 厚度/m | 混合层 深度/m | 障碍层 厚度/m | ||
A1(5903455) | 16.1 | 25.2 | 16.6 | 4.5 | |
A3(2901469) | 25.3 | 5.8 | 35.4 | 15.7 | |
A4(5903454) | 18.7 | 0.0 | 30.9 | 13.9 | |
A5(5902165) | 16.0 | 5.2 | 24.7 | 0 |
Argo | 混合长度/m | 净抬升距离①/m |
---|---|---|
A1(5903455) | 10.01 | 3.325 |
A3(2901469) | 18.53 | -1.669 |
A4(5903454) | 14.37 | 4.268 |
A5(5902165) | 15.45 | -0.676 |
Tab.3 Mixing length and net lift distance
Argo | 混合长度/m | 净抬升距离①/m |
---|---|---|
A1(5903455) | 10.01 | 3.325 |
A3(2901469) | 18.53 | -1.669 |
A4(5903454) | 14.37 | 4.268 |
A5(5902165) | 15.45 | -0.676 |
Fig.7 The distribution of vertical velocity of study area from 16th to 18th of July (Positive values represent upward velocity, negative values represent downward velocity.)
Fig.10 Temperature,salinity and precipitation changes of moored buoy S1 from 15th to 20th of July (Dashed line represents typhoon’s passage. Data has been smoothed with a 30-minute moving average.)
[1] |
PARK J J, KWON Y O, PRICE J F. Argo array observation of ocean heat content changes induced by tropical cyclones in the north Pacific[J]. Journal of Geophysical Research, 2011, 116(C12): C12025.
DOI URL |
[2] |
BALAGURU K, FOLTZ G R, LEUNG L R, et al. Global warming-induced upper-ocean freshening and the intensification of super typhoons[J]. Nature Communications, 2016, 7:13670.
DOI PMID |
[3] | 端义宏, 余晖, 伍荣生. 热带气旋强度变化研究进展[J]. 气象学报, 2005, 63(5):636-645. |
DUAN Y H, YU H, WU R S. Review of the research in the intensity change of tropical cyclone[J]. Acta Meteorologica Sinica, 2005, 63(5): 636-645. | |
[4] | 周磊, 陈大可, 雷小途, 等. 海洋与台风相互作用研究进展[J]. 科学通报, 2019, 64(1):60-72. |
ZHOU L, CHEN D K, LEI X T, et al. Progress and perspective on interactions between ocean and typhoon[J]. Chinese Science Bulletin, 2019, 64(1): 60-72. | |
[5] | 刘增宏, 许建平, 朱伯康, 等. 利用Argo资料研究2001—2004年期间西北太平洋海洋上层对热带气旋的响应[J]. 热带海洋学报, 2006, 25(1):1-8. |
LIU Z H, XU J P, ZHU B K, et al. Upper ocean response to tropical cyclones in northwestern Pacific during 2001—2004 by Argo data[J]. Journal of Tropical Oceanography, 2006, 25(1): 1-8. | |
[6] |
FU H L, WANG X D, CHU P C, et al. Tropical cyclone footprint in the ocean mixed layer observed by Argo in the Northwest Pacific[J]. Journal of Geophysical Research: Oceans, 2014, 119(11): 8078-8092.
DOI URL |
[7] |
PRICE J F. Upper ocean response to a hurricane[J]. Journal of Physical Oceanography, 1981, 11(2): 153-175.
DOI URL |
[8] | 杨元建, 傅云飞, 孙亮, 等. 基于多卫星和Argo浮标观测海洋上层对台风婷婷的响应[J]. 中国科学技术大学学报, 2010, 40(1):1-7. |
YANG Y J, FU Y F, SUN L, et al. Responses of the upper ocean to Typhoon Tingting observed from multiplatform satellites and Argo float[J]. Journal of University of Science and Technology of China, 2010, 40(1): 1-7. | |
[9] |
宋勇军, 唐丹玲. 南海东北部混合层深度对热带气旋海鸥和凤凰的响应[J]. 热带海洋学报, 2017, 36(1):15-24.
DOI |
SONG Y J, TANG D L. Mixed layer depth responses to tropical cyclones Kalmaegi and Fung-Wong in the northeastern South China Sea[J]. Journal of Tropical Oceanography, 2017, 36(1): 15-24.
DOI |
|
[10] |
ZHANG H, CHEN D K, ZHOU L, et al. Upper ocean response to typhoon Kalmaegi (2014)[J]. Journal of Geophysical Research: Oceans, 2016, 121(8): 6520-6535.
DOI URL |
[11] |
LIU S S, SUN L A, WU Q Y, et al. The responses of cyclonic and anticyclonic eddies to typhoon forcing: The vertical temperature-salinity structure changes associated with the horizontal convergence/divergence[J]. Journal of Geophysical Research: Oceans, 2017, 122(6): 4974-4989.
DOI URL |
[12] |
ZHANG H, WU R H, CHEN D K, et al. Net modulation of upper ocean thermal structure by typhoon Kalmaegi (2014)[J]. Journal of Geophysical Research: Oceans, 2018, 123(10): 7154-7171.
DOI URL |
[13] |
ZHANG H, LIU X H, WU R H, et al. Ocean response to successive typhoons Sarika and Haima (2016) based on data acquired via multiple satellites and moored array[J]. Remote Sensing, 2019, 11(20): 2360.
DOI URL |
[14] | 牟平宇, 林霄沛. 台风“苏力”(2013)期间海洋上层温、盐及海平面异常变化特征[J]. 海洋湖沼通报, 2018(3):1-11. |
MU P Y, LIN X P. Changes in upper ocean temperature, salt and sea level during typhoon SOULIK(2013)[J]. Transactions of Oceanology and Limnology, 2018(3): 1-11. | |
[15] | 张翰. 上层海洋对热带气旋的动力学响应机制[D]. 厦门: 厦门大学, 2017. |
ZHANG H. Dynamical mechanisms of upper oceanic response to tropical cyclones[D]. Xiamen: Xiamen University, 2017. | |
[16] | LIN S, ZHANG W Z, SHANG S P, et al. Ocean response to typhoons in the western North Pacific: Composite results from Argo data[J]. Deep Sea Research Part I: Oceano-graphic Research Papers, 2017, 123: 62-74. |
[17] |
BALAGURU K, TARAPHDAR S, LEUNG L R, et al. Cyclone-cyclone interactions through the ocean pathway[J]. Geophysical Research Letters, 2014, 41(19): 6855-6862.
DOI URL |
[18] |
WANG X D, HAN G J, QI Y Q, et al. Impact of barrier layer on typhoon-induced sea surface cooling[J]. Dynamics of Atmospheres and Oceans, 2011, 52(3): 367-385.
DOI URL |
[19] | DE BOYER MONTÉGUT C, MIGNOT J, LAZAR A, et al. Control of salinity on the mixed layer depth in the world ocean: 1. General description[J]. Journal of Geophysical Research, 2007, 112(C6): C06011. |
[20] |
DOMINGUES R, GONI G, BRINGAS F, et al. Upper Ocean response to Hurricane Gonzalo (2014): Salinity effects revealed by targeted and sustained underwater glider observations[J]. Geophysical Research Letters, 2015, 42(17): 7131-7138.
DOI URL |
[21] | REUL N, CHAPRON B, GRODSKY S A, et al. Satellite observations of the sea surface salinity response to tropical cyclones[J]. Geophysical Research Letters, 2021, 48(1): e2020GL091478. |
[22] |
HSU P C, HO C R. Typhoon-induced ocean subsurface variations from glider data in the Kuroshio region adjacent to Taiwan[J]. Journal of Oceanography, 2019, 75(1): 1-21.
DOI |
[23] | GRODSKY S A, REUL N, LAGERLOEF G, et al. Haline hurricane wake in the Amazon/Orinoco plume: AQUARIUS/SACD and SMOS observations[J]. Geophysical Research Letters, 2012, 39(20): L20603. |
[24] |
吴铃蔚, 凌征. 基于Argo资料的西北太平洋海表面盐度对台风的响应特征分析[J]. 海洋学研究, 2015, 33(3):1-6.
DOI |
WU L W, LING Z. Analysis of sea surface salinity response to typhoon in the Northwest Pacific based on Argo data[J]. Journal of Marine Sciences, 2015, 33(3): 1-6. | |
[25] |
LIU F, ZHANG H, MING J E, et al. Importance of precipitation on the upper ocean salinity response to typhoon Kalmaegi (2014)[J]. Water, 2020, 12(2): 614.
DOI URL |
[26] |
LIN Y C, OEY L Y. Rainfall-enhanced blooming in typhoon wakes[J]. Scientific Reports, 2016, 6: 31310.
DOI PMID |
[27] | 许东峰, 刘增宏, 徐晓华, 等. 西北太平洋暖池区台风对海表盐度的影响[J]. 海洋学报, 2005, 27(6):9-15. |
XU D F, LIU Z H, XU X H, et al. The influence of typhoon on the sea surface salinity in the warm pool of the western Pacific[J]. Acta Oceanologica Sinica, 2005, 27(6): 9-15. | |
[28] |
YING M, ZHANG W, YU H, et al. An overview of the China meteorological administration tropical cyclone database[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(2): 287-301.
DOI URL |
[29] |
LU X Q, YU H, YING M, et al. Western North Pacific tropical cyclone database created by the China meteorological administration[J]. Advances in Atmospheric Sciences, 2021, 38(4): 690-699.
DOI |
[30] |
LI J G, SUN L A, YANG Y J, et al. Accurate evaluation of sea surface temperature cooling induced by typhoons based on satellite remote sensing observations[J]. Water, 2020, 12(5): 1413.
DOI URL |
[31] |
POWELL M D, VICKERY P J, REINHOLD T A. Reduced drag coefficient for high wind speeds in tropical cyclones[J]. Nature, 2003, 422(6929): 279-283.
DOI URL |
[32] |
JAIMES B, SHAY L K, UHLHORN E W. Enthalpy and momentum fluxes during hurricane earl relative to underlying ocean features[J]. Monthly Weather Review, 2015, 143(1): 111-131.
DOI URL |
[33] | LIU Z, LI Z, LU S, et al. Scattered data set of temperature and salinity profiles from the international Argo program over the global ocean[J]. Global Change Research Data Publishing & Repository, 2021, 5(4): 22-31. |
[34] | KARA A B, ROCHFORD P A, HURLBURT H E. An optimal definition for ocean mixed layer depth[J]. Journal of Geophysical Research: Oceans, 2000, 105(C7): 16803-16821. |
[35] |
BALAGURU K, FOLTZ G R, LEUNG L R, et al. Dynamic Potential Intensity: An improved representation of the ocean’s impact on tropical cyclones[J]. Geophysical Research Letters, 2015, 42(16): 6739-6746.
DOI URL |
[36] | MITARAI S, MCWILLIAMS J C. Wave glider observations of surface winds and currents in the core of Typhoon Danas[J]. Geophysical Research Letters, 2016, 43(21): 11312-11319. |
[37] |
董航, 姜良红, 章向明, 等. 台风威马逊入侵南海的路径分析[J]. 海洋学研究, 2016, 34(1):1-7.
DOI |
DONG H, JIANG L H, ZHANG X M, et al. Analysis on the track of typhoon Rammasun into the South China Sea[J]. Journal of Marine Sciences, 2016, 34(1): 1-7.
DOI |
|
[38] | 吕心艳, 许映龙, 黄焕卿. 台风“威马逊”(1409)在南海北部急剧增强的环境因子分析[J]. 海洋预报, 2021, 38(3):1-10. |
LÜ X Y, XU Y L, HUANG H Q. Analysis on environ-mental factors of the extremely rapid intensification of typhoon “Rammasun”(1409) in the northern South China Sea[J]. Marine Forecasts, 2021, 38(3): 1-10. | |
[39] |
LI X, ZHANG X L, FU D Y, et al. Strengthening effect of super typhoon Rammasun (2014) on upwelling and cold eddies in the South China Sea[J]. Journal of Oceanology and Limnology, 2021, 39(2): 403-419.
DOI |
[40] |
YAN Y F, LI L, WANG C Z. The effects of oceanic barrier layer on the upper ocean response to tropical cyclones[J]. Journal of Geophysical Research: Oceans, 2017, 122(6): 4829-4844.
DOI URL |
[41] |
ZHANG Z X, LIU L L, WANG F. Oceanic barrier layer variation induced by tropical cyclones in the Northwest Pacific[J]. Journal of Oceanology and Limnology, 2019, 37(2): 375-384.
DOI |
[42] |
PHAM H T, SARKAR S. Turbulent entrainment in a strongly stratified barrier layer[J]. Journal of Geophysical Research: Oceans, 2017, 122(6): 5075-5087.
DOI URL |
[1] | SUN Zhenhao, SHENG Liuyang, JIANG Xinqin, MA Xiao, WANG Bin, ZENG Jiangning, JIANG Zhibing, . An analysis on the phenomenon of increasing warmwater species abundance of phytoplankton in the Changjiang (Yangtze River) Estuary during summer of 2017#br# [J]. Journal of Marine Sciences, 2021, 39(4): 82-90. |
[2] | NIU Yuan, QIU Zhiwei, LIU Ruixiang, WU Zhenyu, CHANG Yujia, PAN Chuntian. Quality assessment and characteristic analysis of global sea surface salinity products based on SMAP [J]. Journal of Marine Sciences, 2021, 39(3): 53-62. |
[3] | CHEN Ying, ZHAO Hui , . Spatio-temporal distribution of chlorophyll in the mid-western South China Sea [J]. Journal of Marine Sciences, 2021, 39(3): 84-94. |
[4] | ZHOU Yongyuan, YAN Yunwei, XING Xiaogang, CHAI Fei. Assessment of the Pacific Equatorial Intermediate Currents in five ocean models outputs based on the observation calculated from Argo trajectories [J]. Journal of Marine Sciences, 2020, 38(3): 1-9. |
[5] | LIU Qiang, SHI Xiaolai, LÜ Haiyan, ZHU Yong, WU Bin. Preparation of standard reference material for heavy metals in low salinity seawater [J]. Journal of Marine Sciences, 2020, 38(3): 76-82. |
[6] | LIU Songnan, XU Dongfeng. The inter-annual variations of the volume of NorthPacific Tropical Water and its mechanism [J]. Journal of Marine Sciences, 2020, 38(2): 1-8. |
[7] | XIE Chun-hu, XU Miao-miao, CAO Sha-sha, ZHANG Yong, ZHANG Chun-ling. Gridded Argo data set based on GDCSM analysis technique: establishment and preliminary applications [J]. Journal of Marine Sciences, 2019, 37(4): 24-35. |
[8] | ZHONG Jia-li, LI Ya-he, ZHENG Ming-shan, ZANG Ru, XU Nian-jun. Effects of different hypersalinity models on the photo-physiological performances and related gene expression in Ulva prolifera [J]. Journal of Marine Sciences, 2019, 37(2): 72-80. |
[9] | ZHANG Xiao-long, FU Dong-yang, LIU Da-zhao, LIU Bei, YU Guo, ZHONG Ya-feng, WANG Huan. Study on marine environment of the tuna purse seine fishery in Western and Central Pacific based on EOF analysis [J]. Journal of Marine Sciences, 2019, 37(2): 81-94. |
[10] | ZHANG Ying, TAN Yan-chun, PENG Fa-ding, LIAO Xing-jie, YU Yu-xin. Study on time series prediction model of sea surface temperature based on Ensemble Empirical Mode Decomposition and Autoregressive Integrated Moving Average [J]. Journal of Marine Sciences, 2019, 37(1): 9-14. |
[11] | QU Ke, MO long-ying, LI Zhang-long. Analysis of acoustic propagation characteristics of the low salinity lens outside the Pearl River Estuary [J]. Journal of Marine Sciences, 2019, 37(1): 15-20. |
[12] | CHEN Jian, CHENG Rui, LIU Juan, WANG Hui-zan, BAO Sen-liang, YAN Heng-qian. Study on effective resolutions of remotely sensed reanalysis products of sea surface salinity [J]. Journal of Marine Sciences, 2018, 36(4): 17-27. |
[13] | ZHOU Kong-Lin,DU Ping,SHOU Lu,LIAO Yi-Bo,LIU Yong-Ye,HUANG Wei. Effects of abrupt temperature drop on the eggs and larvae of Larimichthys crocea [J]. Journal of Marine Sciences, 2018, 36(4): 68-75. |
[14] | DONG Gui-ying, CAO Min-jie, ZHANG Feng, DU Zhen-hong, LIU Ren-yi, WU Sen-sen. Research on collaborative management method of Argo data [J]. Journal of Marine Sciences, 2017, 35(3): 1-8. |
[15] | HE Xin, SUN Guo-sheng, CHU Feng-you, WANG Chun-guang, JIN Rui-xiang, LI Yang, ZHAN Nai-chen, LIU Shi-wei, SUN Jiu-da. Chemical characteristics and geological implication of plagioclase in CA Seamount basalts from the Middle Pacific [J]. Journal of Marine Sciences, 2017, 35(2): 23-32. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||