Journal of Marine Sciences ›› 2023, Vol. 41 ›› Issue (2): 28-44.DOI: 10.3969/j.issn.1001-909X.2023.02.003
Previous Articles Next Articles
CUI Minghui1(), TU Junbiao1, MENG Lingpeng1, GUO Xingjie1,2, SU Ni1, FAN Daidu1,*()
Received:
2022-12-20
Revised:
2023-02-02
Online:
2023-06-15
Published:
2023-07-27
CLC Number:
CUI Minghui, TU Junbiao, MENG Lingpeng, GUO Xingjie, SU Ni, FAN Daidu. Wave characteristics and their influencing factors on Nanhui tidal flats in the Changjiang Estuary[J]. Journal of Marine Sciences, 2023, 41(2): 28-44.
Add to citation manager EndNote|Ris|BibTeX
URL: http://hyxyj.sio.org.cn/EN/10.3969/j.issn.1001-909X.2023.02.003
Fig.1 Geographical overview and layout of stations at Nanhui tidal flats in the Changjiang Estuary (a) and elevation changes along the profiles where three stations are located (b) (The three asterisks in the fig.b indicate the positions of the three stations.)
站位 | 经纬度 | 仪器 | 采样频率 /Hz | 流速探头距 滩面距离/m | 潮周期 | ||
---|---|---|---|---|---|---|---|
T1 | T2 | T3 | |||||
S1 | 121°59'14.50″E, 30°53'41.32″N | ADV9658 | 32 | 0.28 | 9月5日19:00— 9月6日03:50 | 9月6日07:20—15:50 | 9月6日19:30— 9月7日04:20 |
S2 | 121°55'45.44″E, 30°51'36.40″N | ADV8160 | 32 | 0.20 | 9月5日18:40— 9月6日04:50 | 9月6日07:00—16:40 | 9月6日19:20— 9月7日05:10 |
S3 | 121°57'14.15″E, 30°59'08.59″N | ADV8173 | 32 | 0.52 | 9月5日19:10— 9月6日04:10 | 9月6日07:40—16:10 | 9月6日20:10— 9月7日05:00 |
Tab.1 Locations of three stations, instrumentation and their valid observation periods
站位 | 经纬度 | 仪器 | 采样频率 /Hz | 流速探头距 滩面距离/m | 潮周期 | ||
---|---|---|---|---|---|---|---|
T1 | T2 | T3 | |||||
S1 | 121°59'14.50″E, 30°53'41.32″N | ADV9658 | 32 | 0.28 | 9月5日19:00— 9月6日03:50 | 9月6日07:20—15:50 | 9月6日19:30— 9月7日04:20 |
S2 | 121°55'45.44″E, 30°51'36.40″N | ADV8160 | 32 | 0.20 | 9月5日18:40— 9月6日04:50 | 9月6日07:00—16:40 | 9月6日19:20— 9月7日05:10 |
S3 | 121°57'14.15″E, 30°59'08.59″N | ADV8173 | 32 | 0.52 | 9月5日19:10— 9月6日04:10 | 9月6日07:40—16:10 | 9月6日20:10— 9月7日05:00 |
站位 | 潮时 | 平均水深/m | 平均流速/(m·s-1) | 平均流向/(°) | 波传播方向/(°) | 平均历时/h |
---|---|---|---|---|---|---|
S1 | 涨潮 | 2.69 | 0.44 | 260.09 | 285.24 | 3.61 |
落潮 | 2.63 | 0.49 | 57.04 | 302.21 | 5.11 | |
全潮 | 2.65 | 0.47 | 158.57 | 295.08 | 8.72 | |
S2 | 涨潮 | 2.93 | 0.20 | 247.56 | 260.11 | 4.22 |
落潮 | 2.50 | 0.18 | 79.89 | 280.34 | 5.39 | |
全潮 | 2.71 | 0.17 | 163.73 | 270.23 | 9.61 | |
S3 | 涨潮 | 2.97 | 0.38 | 309.77 | 318.10 | 4.00 |
落潮 | 2.48 | 0.25 | 128.85 | 203.24 | 4.78 | |
全潮 | 2.70 | 0.31 | 203.24 | 275.78 | 8.78 |
Tab.2 Statistics of key tidal hydrodynamic parameters over varied tidal phases at the three stations
站位 | 潮时 | 平均水深/m | 平均流速/(m·s-1) | 平均流向/(°) | 波传播方向/(°) | 平均历时/h |
---|---|---|---|---|---|---|
S1 | 涨潮 | 2.69 | 0.44 | 260.09 | 285.24 | 3.61 |
落潮 | 2.63 | 0.49 | 57.04 | 302.21 | 5.11 | |
全潮 | 2.65 | 0.47 | 158.57 | 295.08 | 8.72 | |
S2 | 涨潮 | 2.93 | 0.20 | 247.56 | 260.11 | 4.22 |
落潮 | 2.50 | 0.18 | 79.89 | 280.34 | 5.39 | |
全潮 | 2.71 | 0.17 | 163.73 | 270.23 | 9.61 | |
S3 | 涨潮 | 2.97 | 0.38 | 309.77 | 318.10 | 4.00 |
落潮 | 2.48 | 0.25 | 128.85 | 203.24 | 4.78 | |
全潮 | 2.70 | 0.31 | 203.24 | 275.78 | 8.78 |
站点 | 潮周期 | 潮时 | 有效波高/m | 平均周期/s | 平均跨零周期/s | 波轨流速/(m·s-1) |
---|---|---|---|---|---|---|
S1 | T1 | 全潮范围 | 0.08~0.52 | 3.08~5.73 | 2.80~4.90 | 0.10~0.26 |
涨潮平均 | 0.40 | 3.97 | 3.56 | 0.20 | ||
落潮平均 | 0.28 | 4.20 | 3.66 | 0.14 | ||
全潮平均 | 0.34 | 4.11 | 3.62 | 0.16 | ||
T2 | 全潮范围 | 0.06~0.56 | 3.04~4.90 | 2.90~4.46 | 0.08~0.22 | |
涨潮平均 | 0.43 | 3.28 | 3.11 | 0.19 | ||
落潮平均 | 0.28 | 4.39 | 3.85 | 0.14 | ||
全潮平均 | 0.36 | 3.94 | 3.54 | 0.15 | ||
T3 | 全潮范围 | 0.04~0.51 | 3.37~5.60 | 3.13~4.90 | 0.06~0.24 | |
涨潮平均 | 0.40 | 3.62 | 3.35 | 0.19 | ||
落潮平均 | 0.22 | 4.42 | 3.89 | 0.11 | ||
全潮平均 | 0.31 | 4.09 | 3.67 | 0.15 | ||
S2 | T1 | 全潮范围 | 0.08~0.41 | 2.62~6.04 | 2.50~5.04 | 0.07~0.25 |
涨潮平均 | 0.31 | 3.30 | 3.05 | 0.15 | ||
落潮平均 | 0.14 | 4.54 | 3.95 | 0.10 | ||
全潮平均 | 0.23 | 3.92 | 3.50 | 0.13 | ||
T2 | 全潮范围 | 0.09~0.50 | 2.72~5.41 | 2.62~4.85 | 0.09~0.23 | |
涨潮平均 | 0.33 | 3.25 | 3.08 | 0.15 | ||
落潮平均 | 0.18 | 4.59 | 4.16 | 0.12 | ||
全潮平均 | 0.26 | 3.92 | 3.62 | 0.15 | ||
T3 | 全潮范围 | 0.06~0.44 | 2.69~5.43 | 2.57~4.75 | 0.06~0.18 | |
涨潮平均 | 0.31 | 3.24 | 3.07 | 0.14 | ||
落潮平均 | 0.15 | 4.16 | 3.70 | 0.09 | ||
全潮平均 | 0.23 | 3.92 | 3.39 | 0.12 | ||
S3 | T1 | 全潮范围 | 0.09~0.47 | 2.61~4.09 | 2.46~3.41 | 0.06~0.13 |
涨潮平均 | 0.34 | 2.51 | 3.13 | 0.10 | ||
落潮平均 | 0.30 | 3.92 | 2.73 | 0.09 | ||
全潮平均 | 0.29 | 3.14 | 2.91 | 0.10 | ||
T2 | 全潮范围 | 0.06~0.50 | 2.50~3.54 | 2.43~3.31 | 0.04~0.13 | |
涨潮平均 | 0.41 | 3.07 | 2.93 | 0.11 | ||
落潮平均 | 0.20 | 2.98 | 2.79 | 0.08 | ||
全潮平均 | 0.30 | 3.03 | 2.86 | 0.09 | ||
T3 | 全潮范围 | 0.05~0.48 | 2.53~4.04 | 2.47~3.52 | 0.03~0.13 | |
涨潮平均 | 0.37 | 3.17 | 2.96 | 0.10 | ||
落潮平均 | 0.16 | 3.32 | 2.98 | 0.06 | ||
全潮范围 | 0.26 | 3.25 | 2.97 | 0.08 |
Tab.3 Statistic of key wave parameters over different tidal phases at the three stations
站点 | 潮周期 | 潮时 | 有效波高/m | 平均周期/s | 平均跨零周期/s | 波轨流速/(m·s-1) |
---|---|---|---|---|---|---|
S1 | T1 | 全潮范围 | 0.08~0.52 | 3.08~5.73 | 2.80~4.90 | 0.10~0.26 |
涨潮平均 | 0.40 | 3.97 | 3.56 | 0.20 | ||
落潮平均 | 0.28 | 4.20 | 3.66 | 0.14 | ||
全潮平均 | 0.34 | 4.11 | 3.62 | 0.16 | ||
T2 | 全潮范围 | 0.06~0.56 | 3.04~4.90 | 2.90~4.46 | 0.08~0.22 | |
涨潮平均 | 0.43 | 3.28 | 3.11 | 0.19 | ||
落潮平均 | 0.28 | 4.39 | 3.85 | 0.14 | ||
全潮平均 | 0.36 | 3.94 | 3.54 | 0.15 | ||
T3 | 全潮范围 | 0.04~0.51 | 3.37~5.60 | 3.13~4.90 | 0.06~0.24 | |
涨潮平均 | 0.40 | 3.62 | 3.35 | 0.19 | ||
落潮平均 | 0.22 | 4.42 | 3.89 | 0.11 | ||
全潮平均 | 0.31 | 4.09 | 3.67 | 0.15 | ||
S2 | T1 | 全潮范围 | 0.08~0.41 | 2.62~6.04 | 2.50~5.04 | 0.07~0.25 |
涨潮平均 | 0.31 | 3.30 | 3.05 | 0.15 | ||
落潮平均 | 0.14 | 4.54 | 3.95 | 0.10 | ||
全潮平均 | 0.23 | 3.92 | 3.50 | 0.13 | ||
T2 | 全潮范围 | 0.09~0.50 | 2.72~5.41 | 2.62~4.85 | 0.09~0.23 | |
涨潮平均 | 0.33 | 3.25 | 3.08 | 0.15 | ||
落潮平均 | 0.18 | 4.59 | 4.16 | 0.12 | ||
全潮平均 | 0.26 | 3.92 | 3.62 | 0.15 | ||
T3 | 全潮范围 | 0.06~0.44 | 2.69~5.43 | 2.57~4.75 | 0.06~0.18 | |
涨潮平均 | 0.31 | 3.24 | 3.07 | 0.14 | ||
落潮平均 | 0.15 | 4.16 | 3.70 | 0.09 | ||
全潮平均 | 0.23 | 3.92 | 3.39 | 0.12 | ||
S3 | T1 | 全潮范围 | 0.09~0.47 | 2.61~4.09 | 2.46~3.41 | 0.06~0.13 |
涨潮平均 | 0.34 | 2.51 | 3.13 | 0.10 | ||
落潮平均 | 0.30 | 3.92 | 2.73 | 0.09 | ||
全潮平均 | 0.29 | 3.14 | 2.91 | 0.10 | ||
T2 | 全潮范围 | 0.06~0.50 | 2.50~3.54 | 2.43~3.31 | 0.04~0.13 | |
涨潮平均 | 0.41 | 3.07 | 2.93 | 0.11 | ||
落潮平均 | 0.20 | 2.98 | 2.79 | 0.08 | ||
全潮平均 | 0.30 | 3.03 | 2.86 | 0.09 | ||
T3 | 全潮范围 | 0.05~0.48 | 2.53~4.04 | 2.47~3.52 | 0.03~0.13 | |
涨潮平均 | 0.37 | 3.17 | 2.96 | 0.10 | ||
落潮平均 | 0.16 | 3.32 | 2.98 | 0.06 | ||
全潮范围 | 0.26 | 3.25 | 2.97 | 0.08 |
站位 | 潮周期 | 峰值周期/s | 最大谱密度/(m2·s) | 谱尖度参数 | 谱宽度参数 |
---|---|---|---|---|---|
S1 | T1 | 8.70 | 0.220 | 1.83 | 0.81 |
T2 | 6.25 | 0.072 | 1.36 | 0.66 | |
T3 | 6.67 | 0.098 | 1.46 | 0.68 | |
S2 | T1 | 2.01 | 0.017 | 4.82 | 0.43 |
T2 | 2.01 | 0.069 | 2.18 | 0.47 | |
T3 | 6.74 | 0.032 | 3.96 | 0.48 | |
S3 | T1 | 2.68 | 0.144 | 4.81 | 0.46 |
T2 | 3.08 | 0.101 | 2.45 | 0.43 | |
T3 | 6.06 | 0.086 | 1.70 | 0.58 |
Tab.4 Spectral parameters at the moment of maximum wave height at the three stations
站位 | 潮周期 | 峰值周期/s | 最大谱密度/(m2·s) | 谱尖度参数 | 谱宽度参数 |
---|---|---|---|---|---|
S1 | T1 | 8.70 | 0.220 | 1.83 | 0.81 |
T2 | 6.25 | 0.072 | 1.36 | 0.66 | |
T3 | 6.67 | 0.098 | 1.46 | 0.68 | |
S2 | T1 | 2.01 | 0.017 | 4.82 | 0.43 |
T2 | 2.01 | 0.069 | 2.18 | 0.47 | |
T3 | 6.74 | 0.032 | 3.96 | 0.48 | |
S3 | T1 | 2.68 | 0.144 | 4.81 | 0.46 |
T2 | 3.08 | 0.101 | 2.45 | 0.43 | |
T3 | 6.06 | 0.086 | 1.70 | 0.58 |
站位 | 潮周期 | 谱峰频率/Hz | 谱峰值能量/(m2·s) | PM谱峰值能量/(m2·s) | 比值 | 波浪成分 |
---|---|---|---|---|---|---|
S1 | T1 | 0.12/0.22① | 0.220/0.015 | 7.125/0.162 | <1/<1 | 涌浪 |
T2 | 0.16/0.31 | 0.072/0.025 | 1.367/0.049 | <1/<1 | 涌浪 | |
T3 | 0.15/0.34 | 0.098/0.022 | 1.887/0.003 | <1/>1 | 涌浪/风浪 | |
S2 | T1 | 0.27/0.35 | 0.011/0.017 | 0.103/0.026 | <1/<1 | 涌浪 |
T2 | 0.14/0.28 | 0.015/0.069 | 2.369/0.081 | <1/<1 | 涌浪 | |
T3 | 0.16/0.31 | 0.032/0.023 | 1.300/0.049 | <1/<1 | 涌浪 | |
S3 | T1 | 0.11/0.38 | 0.004/0.144 | 10.379/0.020 | <1/>1 | 涌浪/风浪 |
T2 | 0.16/0.33 | 0.024/0.091 | 1.518/0.038 | <1/>1 | 涌浪/风浪 | |
T3 | 0.16/0.39 | 0.086/0.045 | 1.172/0.016 | <1/>1 | 涌浪/风浪 |
Tab.5 Employing wave energy spectrum statistics to discriminate wave types at the three stations
站位 | 潮周期 | 谱峰频率/Hz | 谱峰值能量/(m2·s) | PM谱峰值能量/(m2·s) | 比值 | 波浪成分 |
---|---|---|---|---|---|---|
S1 | T1 | 0.12/0.22① | 0.220/0.015 | 7.125/0.162 | <1/<1 | 涌浪 |
T2 | 0.16/0.31 | 0.072/0.025 | 1.367/0.049 | <1/<1 | 涌浪 | |
T3 | 0.15/0.34 | 0.098/0.022 | 1.887/0.003 | <1/>1 | 涌浪/风浪 | |
S2 | T1 | 0.27/0.35 | 0.011/0.017 | 0.103/0.026 | <1/<1 | 涌浪 |
T2 | 0.14/0.28 | 0.015/0.069 | 2.369/0.081 | <1/<1 | 涌浪 | |
T3 | 0.16/0.31 | 0.032/0.023 | 1.300/0.049 | <1/<1 | 涌浪 | |
S3 | T1 | 0.11/0.38 | 0.004/0.144 | 10.379/0.020 | <1/>1 | 涌浪/风浪 |
T2 | 0.16/0.33 | 0.024/0.091 | 1.518/0.038 | <1/>1 | 涌浪/风浪 | |
T3 | 0.16/0.39 | 0.086/0.045 | 1.172/0.016 | <1/>1 | 涌浪/风浪 |
[1] | XU X G, CHEN Z X, FENG Z. From natural driving to artificial intervention: Changes of the Yellow River Estuary and delta development[J]. Ocean & Coastal Management, 2019, 174: 63-70. |
[2] |
ZHU Q, YANG S L, MA Y X. Intra-tidal sedimentary processes associated with combined wave-current action on an exposed, erosional mudflat, southeastern Yangtze River Delta, China[J]. Marine Geology, 2014, 347: 95-106.
DOI URL |
[3] |
FAN D D, GUO Y X, WANG P, et al. Cross-shore variations in morphodynamic processes of an open-coast mudflat in the Changjiang Delta, China: With an emphasis on storm impacts[J]. Continental Shelf Research, 2006, 26(4): 517-538.
DOI URL |
[4] | 陈子燊, 李志强, 李志龙, 等. 海滩碎波带波性质的统计对比分析[J]. 中山大学学报:自然科学版, 2002, 41(6):86-90. |
CHEN Z S, LI Z Q, LI Z L, et al. Statistical analysis and comparison on wave properties in a beach-surf zone[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2002, 41(6): 86-90. | |
[5] | 王科华, 任赵飞, 周智鹏, 等. 工程海域波浪特征分析方法比较[J]. 海洋工程, 2022, 40(3):149-158. |
WANG K H, REN Z F, ZHOU Z P, et al. Comparison of wave characteristics analysis methods for project site[J]. The Ocean Engineering, 2022, 40(3):149-158. | |
[6] |
VANDEVER J P, SIEGEL E M, BRUBAKER J M, et al. Influence of spectral width on wave height parameter estimates in coastal environments[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2008, 134(3): 187-194.
DOI URL |
[7] |
AMRUTHA M M, SANIL KUMAR V, SHARMA S, et al. Characteristics of shallow water waves off the central west coast of India before, during and after the onset of the Indian summer monsoon[J]. Ocean Engineering, 2015, 107: 259-270.
DOI URL |
[8] |
KUMAR V S, JOHNSON G, DORA G U, et al. Variations in nearshore waves along Karnataka, west coast of India[J]. Journal of Earth System Science, 2012, 121(2): 393-403.
DOI URL |
[9] |
SANIL KUMAR V, SINGH J, PEDNEKAR P, et al. Waves in the nearshore waters of northern Arabian Sea during the summer monsoon[J]. Ocean Engineering, 2011, 38(2/3): 382-388.
DOI URL |
[10] | AMRUTHA M M, SANIL KUMAR V. Characteristics of high monsoon wind-waves observed at multiple stations in the eastern Arabian Sea[J]. Ocean Science Discussions, 2017: 1-30. https://doi.org/10.5194/05-2017-84. |
[11] |
ZHOU Y, YE Q, SHI W Y, et al. Wave characteristics in the nearshore waters of Sanmen Bay[J]. Applied Ocean Research, 2020, 101: 102236.
DOI URL |
[12] |
YANG B, XIE H W, DING J, et al. Wave characteristics in northeast coastal waters of Zhoushan Island under the influence of winter monsoon[J]. IOP Conference Series: Earth and Environmental Science, 2021, 787(1): 012134.
DOI |
[13] | 祁祥礼, 郑向阳, 谌业良. 渤海湾中部波浪特征分析[J]. 水道港口, 2018, 39(3):288-293. |
QI X L, ZHENG X Y, SHEN Y L. Analysis of wave characteristic in the middle part of the Bohai Bay[J]. Journal of Waterway and Harbor, 2018, 39(3): 288-293. | |
[14] | 陈燕萍, 杨世伦, 史本伟, 等. 潮滩上波高的时空变化及其影响因素:以长江三角洲海岸为例[J]. 海洋科学进展, 2012, 30(3):317-327. |
CHEN Y P, YANG S L, SHI B W, et al. Temporal and spatial variations in wave height over intertidal mudflats and the influencing factors: A case study from the Yangtze River Delta[J]. Advances in Marine Science, 2012, 30(3): 317-327. | |
[15] | 赵建春, 李九发, 李占海, 等. 长江口南汇嘴潮滩短期冲淤演变及其动力机制研究[J]. 海洋学报, 2009, 31(4):103-111. |
ZHAO J C, LI J F, LI Z H, et al. Researches on characteristics and dynamic mechanism of short-term scouring and silting changes of the tidal flat on Nanhui Spit in the Changjiang Estuary in China[J]. Acta Oceanologica Sinica, 2009, 31(4): 103-111. | |
[16] | 曹颖, 朱军政. 长江口南汇东滩水动力条件变化的数值预测[J]. 水科学进展, 2005, 16(4):581-585. |
CAO Y, ZHU J Z. Numeric prediction of hydrodynamic condition change at Nanhui east shore of the Yangtze River Estuary[J]. Advances in Water Science, 2005, 16(4): 581-585. | |
[17] | 火苗, 范代读, 陆琦, 等. 长江口南汇边滩冲淤变化规律与机制[J]. 海洋学报, 2010, 32(5):41-51. |
HUO M, FAN D D, LU Q, et al. Decadal variations in the erosion/deposition pattern of Nanhui muddy bank and their mechanism in the Changjiang Delta[J]. Acta Oceanologica Sinica, 2010, 32(5): 41-51. | |
[18] | 李九发, 戴志军, 刘新成, 等. 长江河口南汇嘴潮滩圈围工程前后水沙运动和冲淤演变研究[J]. 泥沙研究, 2010(3):31-37. |
LI J F, DAI Z J, LIU X C, et al. Research on the movement of water and suspended sediment and sedimentation in Nanhui spit of the Yangtze Estuary before and after the construction of reclamation projects on the tidal flat[J]. Journal of Sediment Research, 2010(3): 31-37. | |
[19] |
ZHOU Z, WU Y M, FAN D D, et al. Sediment sorting and bedding dynamics of tidal flat wetlands: Modeling the signature of storms[J]. Journal of Hydrology, 2022, 610: 127913.
DOI URL |
[20] | 戴志军, 陈建勇, 路海亭. 长江河口南汇东滩与南滩沉积物空间相关特征分析[J]. 海洋湖沼通报, 2008(2):46-52. |
DAI Z J, CHEN J Y, LU H T. Analysis on the spatial distribution of deposition fields between the east bank and the south bank, in the Changjiang River Estuary[J]. Tran-sactions of Oceanology and Limnology, 2008(2): 46-52. | |
[21] | 左书华, 李蓓, 杨华. 长江口南汇嘴海域表层悬浮泥沙分布和运动遥感分析[J]. 水道港口, 2010, 31(5):384-389. |
ZUO S H, LI B, YANG H. Remote sensing analysis on distribution and movement of surface suspended sediment in the Nanhuizui tidal flat, Yangtze Estuary[J]. Journal of Waterway and Harbor, 2010, 31(5): 384-389. | |
[22] | 冯凌旋, 李占海, 李九发, 等. 基于机制分解法长江口南汇潮滩悬移质泥沙通量研究[J]. 长江流域资源与环境, 2011, 20(8):944-950. |
FENG L X, LI Z H, LI J F, et al. Fluxes of suspended sediment in the Nanhui tidal flat of the Yangtze Estuary with mechanism decomposition method[J]. Resources and Environment in the Yangtze Basin, 2011, 20(8): 944-950. | |
[23] |
YANG S L, LI H, YSEBAERT T, et al. Spatial and temporal variations in sediment grain size in tidal wetlands, Yangtze Delta: On the role of physical and biotic controls[J]. Estuarine, Coastal and Shelf Science, 2008, 77(4): 657-671.
DOI URL |
[24] |
GORING D G, NIKORA V I. Despiking acoustic Doppler velocimeter data[J]. Journal of Hydraulic Engineering, 2002, 128(1): 117-126.
DOI URL |
[25] | 佘小建, 崔峥, 徐啸. 上海临港工业区芦潮港海域水文泥沙分析[J]. 水利水运工程学报, 2009(1):76-80. |
SHE X J, CUI Z, XU X. Analysis of hydrological and sediment field data in Luchaogang Sea area of Shanghai[J]. Hydro-Science and Engineering, 2009(1): 76-80. | |
[26] | GORDON L, LOHRMANN A. Near-shore Doppler Current meter wave spectra[C]//Ocean wave measurement and analysis (2001). San Francisco, USA: American Society of Civil Engineers, 2002. |
[27] | 鲁远征, 吴加学, 刘欢. 河口底边界层湍流观测后处理技术方法分析[J]. 海洋学报:中文版, 2012, 34(5):39-49. |
LU Y Z, WU J X, LIU H. An integrated post-processing technique for turbulent flows in estuarine bottom boundary layer[J]. Acta Oceanologica Sinica, 2012, 34(5): 39-49.
DOI URL |
|
[28] | 芦军, 范代读, 涂俊彪, 等. 潮滩上应用ADV进行波浪观测与特征参数计算[J]. 海洋通报, 2016, 35(5):523-531. |
LU J, FAN D D, TU J B, et al. Application of ADV in the tidal flat to observe wave processes and calculate their characteristic parameters[J]. Marine Science Bulletin, 2016, 35(5):523-531. | |
[29] |
MACVEAN L J, LACY J R. Interactions between waves, sediment, and turbulence on a shallow estuarine mudflat[J]. Journal of Geophysical Research: Oceans, 2014, 119(3): 1534-1553.
DOI URL |
[30] |
WIBERG P L, SHERWOOD C R. Calculating wave-generated bottom orbital velocities from surface-wave parameters[J]. Computers & Geosciences, 2008, 34(10): 1243-1262.
DOI URL |
[31] |
PORTILLA J, OCAMPO-TORRES F J, MONBALIU J. Spectral partitioning and identification of wind sea and swell[J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(1): 107-122.
DOI URL |
[32] | 李志强, 陈子燊, 李志龙, 等. 粤东后江湾近岸波浪要素变化特征分析[C]// 中国海洋工程学会.第十二届中国海岸工程学术讨论会论文集. 北京: 海洋出版社, 2005:5. |
LI Z Q, CHEN Z S, LI Z L, et al. Analysis of the variation characteristics of nearshore wave elements in Houjiang Bay, eastern Guangdong[C]// China Ocean Engineering Society. Proceedings of the 12th China Coastal Engineering Sympo-sium. Beijing: China Ocean Press, 2005: 5. | |
[33] | 李志强, 陈子燊, 李志龙. 近岸带波浪传播过程中波性质的统计对比分析[J]. 广东海洋大学学报, 2010, 30(4):43-47. |
LI Z Q, CHEN Z S, LI Z L. Statistical analysis and comparison on wave characteristics during wave propagating in nearshore zone[J]. Journal of Zhanjiang Ocean Univer-sity, 2010, 30(4): 43-47. | |
[34] | 陈子燊, 李志强, 戴志军, 等. 近岸带三组成波耦合作用的观测与分析[J]. 热带海洋学报, 2003, 22(6):46-53. |
CHEN Z S, LI Z Q, DAI Z J, et al. Observations and analysis for triad wave coupling in nearshore waters[J]. Journal of Tropical Oceanography, 2003, 22(6): 46-53. | |
[35] | 任剑波, 何青, 沈健, 等. 远区台风 “三巴” 对长江口波浪动力场的作用机制[J]. 海洋科学, 2020, 44(5):12-23. |
REN J B, HE Q, SHEN J, et al. The effect mechanism of a remote typhoon “Sanba” on wave dynamics in the Changjiang Estuary[J]. Marine Sciences, 2020, 44(5): 12-23. |
[1] | XU Yixin, SHEN Zhongyan, YANG Chunguo, ZHANG Tao. Debris flows deposition in the Northwind Basin, western Arctic Ocean [J]. Journal of Marine Sciences, 2023, 41(2): 1-13. |
[2] | ZHOU Yifei, LIAO Guanghong. Spatio-temporal variation characteristics of wind field in South China Sea based on Growing Hierarchical Self-Organizing Map analysis [J]. Journal of Marine Sciences, 2022, 40(2): 19-31. |
[3] | CHEN Ying, ZHAO Hui , . Spatio-temporal distribution of chlorophyll in the mid-western South China Sea [J]. Journal of Marine Sciences, 2021, 39(3): 84-94. |
[4] | ZHANG Dongna, ZHANG Han, CHENG Xuhua , CHEN Dake. Comparative analysis on the characteristics of tropical-cyclone activities over the western North Pacific in three datasets [J]. Journal of Marine Sciences, 2020, 38(3): 48-57. |
[5] | MIAO Yanyi, WANG Bin, LI Dewang, JIN Haiyan, JIANG Zhibin, MA Xiao, YU Peisong, CHEN Jianfang, WANG Junyang. The effect of strong wind on air-sea CO2 flux in the Changjiang River Estuary and its adjacent sea areas [J]. Journal of Marine Sciences, 2020, 38(1): 42-49. |
[6] | FAN Kai-guo, CHANG Jun-fang, GU Yan-zhen, NAN Ming-xing, RAN Yang, ZHOU Yu-feng. Review on remote sensing of offshore wind energy resources by space-borne SAR [J]. Journal of Marine Sciences, 2019, 37(3): 49-54. |
[7] | LI Jing, ZHENG Chong-wei, LI Xin, LUO Zhi-xian, WANG Zhen, YAO Qi. Distribution characteristics of swell in the Pacific and its impact to the marine atmospheric boundary layer [J]. Journal of Marine Sciences, 2019, 37(2): 1-8. |
[8] | ZHANG Xiao-long, FU Dong-yang, LIU Da-zhao, LIU Bei, YU Guo, ZHONG Ya-feng, WANG Huan. Study on marine environment of the tuna purse seine fishery in Western and Central Pacific based on EOF analysis [J]. Journal of Marine Sciences, 2019, 37(2): 81-94. |
[9] | WANG Yi-lin, WANG Xiao-lin, ZHANG Hua-guo. Estimation experiment of sea surface wind speed based on MISR multi-angle optical remote sensing images [J]. Journal of Marine Sciences, 2018, 36(2): 19-26. |
[10] | WANG Lei, XU Dong-feng. Estimating the strength and scale of tornado in Funing County in June 23, 2016 by the data of broken trees [J]. Journal of Marine Sciences, 2017, 35(4): 20-33. |
[11] | LI Cheng, LI Huan, WANG Hui, GAO Jia, WANG Guo-song, DONG Jun-xing, PAN Song, LIU Ke-xiu. Data analysis of High Frequency Surface Wave Radar at Zhujiajian-Shengshan during Typhoon Chan-hom [J]. Journal of Marine Sciences, 2017, 35(1): 41-46. |
[12] | FAN Xu-yan, GU Yan-zhen, FAN Kai-guo. Research of one new altimeter wind speed inversion algorithm [J]. Journal of Marine Sciences, 2015, 33(2): 8-13. |
[13] | GAO Zhan-sheng. Validation of the T639 wind production in the East China Sea during typhoon “Fitow” [J]. Journal of Marine Sciences, 2015, 33(1): 9-15. |
[14] | LI Rui, LI Ben-liang, HU Peng, LIANG Yong-li, LIU Ai-mei. Effects of environmental vertical wind shear on Typhoon Matsa (0509) [J]. Journal of Marine Sciences, 2014, 32(2): 14-22. |
[15] | CHEN Xin-yi, HAO Zeng-zhou, PAN De-lu, HUANG Si-xun, GONG Fang, SHI Dong-sheng. Analysis of temporal and spatial feature of sea surface wind field in China offshore [J]. Journal of Marine Sciences, 2014, 32(1): 1-10. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||