Validation of sea surface temperature from the geostationary meteorological satellite Meteosat-8/SEVIRI over the Indian Ocean

KANG Zhengwu, TU Qianguang, YAN Yunwei, XING Xiaogang

Journal of Marine Sciences ›› 2024, Vol. 42 ›› Issue (2) : 26-39.

PDF(10447 KB)
PDF(10447 KB)
Journal of Marine Sciences ›› 2024, Vol. 42 ›› Issue (2) : 26-39. DOI: 10.3969/j.issn.1001-909X.2024.02.003

Validation of sea surface temperature from the geostationary meteorological satellite Meteosat-8/SEVIRI over the Indian Ocean

Author information +
History +

Abstract

Sea surface temperature (SST) is a key climate variable in oceanographic and meteorological research, widely applied in studies of ocean-atmosphere interactions, ocean mixing, boundary layer processes, and ocean state forecasting. The hourly SST data provided by the European geostationary meteorological satellite Meteosat-8/SEVIRI (M8) is an important data source for these studies. However, the spatiotemporal variations in the errors of SST data from M8 are not yet clear. To assess the reliability and applicability of SST data from M8, this study uses in-situ SST data from the iQuam quality monitoring platform which includes data from ships, drifting buoys, and Argo floats, to validate the hourly SST data from M8 in the Indian Ocean region. The results show that the average bias between M8 and the three types of in-situ data ranges from -0.06 to -0.10 ℃, the root mean square error ranges from 0.48 to 1.03 ℃, and the coefficient of determination ranges from 0.96 to 0.99. Among these, drifting buoys have the most matchups with M8 and the widest coverage, making them an ideal validation data source. Analysis of the spatiotemporal distribution of SST data biases from M8 reveals a -0.6 ℃ bias at night in the northwestern Arabian Sea and northwestern Bay of Bengal, with larger negative biases during the day in these areas, and a bias exceeding -1.0 ℃ during the day in parts of the 40°S-60°S region. SST data from M8 tends to show maximum positive biases in summer and minimum negative biases during the spring-to-summer transition period.

Key words

Indian Ocean / Meteosat-8/SEVIRI / sea surface temperature / validation

Cite this article

Download Citations
KANG Zhengwu , TU Qianguang , YAN Yunwei , et al. Validation of sea surface temperature from the geostationary meteorological satellite Meteosat-8/SEVIRI over the Indian Ocean[J]. Journal of Marine Sciences. 2024, 42(2): 26-39 https://doi.org/10.3969/j.issn.1001-909X.2024.02.003

References

[1]
MERCHANT C J, MINNETT P J, BEGGS H, et al. Global sea surface temperature[M]//Taking the temperature of the earth. Amsterdam: Elsevier, 2019: 5-55.
[2]
靳光强. 海水温度相似预报方法研究与实现[D]. 哈尔滨: 哈尔滨工程大学, 2018.
JIN G Q. Research and realization of analogue prediction method for seawater temperature[D]. Harbin: Harbin Engineering University, 2018.
[3]
罗晓凡, 魏皓, 袁承仪. 利用卫星资料分析黄海海表温度的年际与年代际变化[J]. 中国海洋大学学报:自然科学版, 2012, 42(10):19-25.
LUO X F, WEI H, YUAN C Y. Inter-annual and decadal variations of sea surface temperature in the Yellow Sea by satellite data[J]. Periodical of Ocean University of China, 2012, 42(10): 19-25.
[4]
VAN SCOY K A, MORRIS K P, ROBERTSON J E, et al. Thermal skin effect and the air-sea flux of carbon dioxide: A seasonal high-resolution estimate[J]. Global Biogeochemical Cycles, 1995, 9(2): 253-262.
[5]
BELL M J, FORBES R M, HINES A. Assessment of the FOAM global data assimilation system for real-time operational ocean forecasting[J]. Journal of Marine Systems, 2000, 25(1): 1-22.
[6]
MARTIN M J, HINES A, BELL M J. Data assimilation in the FOAM operational short-range ocean forecasting system: A description of the scheme and its impact[J]. Quarterly Journal of the Royal Meteorological Society, 2007, 133(625): 981-995.
[7]
BENTAMY A, PIOLLÉ J F, GROUAZEL A, et al. Review and assessment of latent and sensible heat flux accuracy over the global oceans[J]. Remote Sensing of Environment, 2017, 201: 196-218.
[8]
DONLON C J, MARTIN M, STARK J, et al. The operational sea surface temperature and sea ice analysis (OSTIA) system[J]. Remote Sensing of Environment, 2012, 116: 140-158.
[9]
WORLEY S J, WOODRUFF S D, REYNOLDS R W, et al. ICOADS release 2.1 data and products[J]. International Journal of Climatology, 2005, 25(7): 823-842.
[10]
TAYLOR P K, KENT E C. The accuracy of meteorological observations from voluntary observing ships: Present status and future requirements[R]. Marine Physics and Ocean Climate, 1999. https://eprints.soton.ac.uk/347754/.
[11]
KEARNS E J, HANAFIN J A, EVANS R H, et al. An independent assessment of pathfinder AVHRR sea surface temperature accuracy using the marine atmosphere emitted radiance interferometer (MAERI)[J]. Bulletin of the American Meteorological Society, 2000, 81(7): 1525-1536.
[12]
KUMAR A, MINNETT P, PODESTÁ G, et al. Analysis of Pathfinder SST algorithm for global and regional conditions[J]. Journal of Earth System Science, 2000, 109(4): 395-405.
[13]
KILPATRICK K A, PODESTÁ G P, EVANS R. Overview of the NOAA/NASA advanced very high resolution radio-meter Pathfinder algorithm for sea surface temperature and associated matchup database[J]. Journal of Geophysical Research: Oceans, 2001, 106(C5): 9179-9197.
[14]
CORLETT G K, BARTON I J, DONLON C J, et al. The accuracy of SST retrievals from AATSR: An initial assessment through geophysical validation against in situ radiometers, buoys and other SST data sets[J]. Advances in Space Research, 2006, 37(4): 764-769.
[15]
管磊, 陈锐, 贺明霞. ERS-1/ATSR海表温度在热带太平洋和西北太平洋的印证与分析[J]. 遥感学报, 2002, 6(1):63-69.
GUAN L, CHEN R, HE M X. Validation of sea surface temperature from ERS-1/ATSR in the tropical and northwest Pacific[J]. Journal of Remote Sensing, 2002, 6(1): 63-69.
[16]
范海燕, 滕军, 管磊, 等. NOAA/AVHRR卫星海表温度在西北太平洋的印证及分析[J]. 海洋预报, 2009, 26(2):7-14.
FAN H Y, TENG J, GUAN L, et al. Validation of sea surface temperature from NOAA/AVHRR in the Northwest Pacific[J]. Marine Forecasts, 2009, 26(2): 7-14.
[17]
MATURI E, HARRIS A, MERCHANT C, et al. NOAA’s sea surface temperature products from operational geostationary satellites[J]. Bulletin of the American Meteorological Society, 2008, 89(12): 1877-1888.
[18]
SCHMETZ J, PILI P, TJEMKES S, et al. An introduction to meteosat second generation (MSG)[J]. Bulletin of the American Meteorological Society, 2002, 83(7): 977-992.
[19]
WOO H J, PARK K A, LI X F, et al. Sea surface temperature retrieval from the first Korean geostationary satellite COMS data: Validation and error assessment[J]. Remote Sensing, 2018, 10(12): 1916.
[20]
YANG J, ZHANG Z Q, WEI C Y, et al. Introducing the new generation of Chinese geostationary weather satellites, Fengyun-4[J]. Bulletin of the American Meteorological Society, 2017, 98(8): 1637-1658.
[21]
王素娟, 崔鹏, 张鹏, 等. FY-3C/VIRR海表温度产品及质量检验[J]. 应用气象学报, 2020, 31(6):729-739.
WANG S J, CUI P, ZHANG P, et al. FY-3C/VIRR sea surface temperature products and quality validation[J]. Journal of Applied Meteorological Science, 2020, 31(6): 729-739.
[22]
张贝贝. 环境星热红外影像海表温度反演及真实性检验[D]. 太原: 太原理工大学, 2022.
ZHANG B B. Inversion and validation of HJ thermal infrared image sea surface temperature[D]. Taiyuan: Taiyuan University of Technology, 2022.
[23]
HUANG B Y, THORNE P W, BANZON V F, et al. Extended reconstructed sea surface temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons[J]. Journal of Climate, 2017, 30(20): 8179-8205.
[24]
门聪. 海洋一号B卫星海洋水色扫描仪(HY-1B/COCTS)海表温度反演与印证[D]. 青岛: 中国海洋大学, 2013.
MEN C. Retrieval and validation of sea surface temperature from HY-1B/COCTS[D]. Qingdao: Ocean University of China, 2013.
[25]
LUO B K, MINNETT P J. Skin sea surface temperatures from the GOES-16 ABI validated with those of the shipborne M-AERI[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(12): 9902-9913.
[26]
TU Q G, HAO Z Z. Validation of sea surface temperature derived from Himawari-8 by JAXA[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 448-459.
[27]
LE BORGNE P, LEGENDRE G, PÉRÉ S. Comparison of MSG/SEVIRI and drifting buoy derived diurnal warming estimates[J]. Remote Sensing of Environment, 2012, 124: 622-626.
[28]
EMERY W J, BALDWIN D J, SCHLÜSSEL P, et al. Accuracy of in situ sea surface temperatures used to calibrate infrared satellite measurements[J]. Journal of Geophysical Research: Oceans, 2001, 106(C2): 2387-2405.
[29]
李凝慧, 管磊. 西太平洋东印度洋Suomi-NPP/VIIRS海表温度印证[J]. 中国海洋大学学报:自然科学版, 2021, 51(8):115-122.
LI N H, GUAN L. Validation of Suomi-NPP/VIIRS sea surface temperature in the western Pacific Ocean and eastern Indian Ocean[J]. Periodical of Ocean University of China, 2021, 51(8): 115-122.
[30]
XU F, IGNATOV A. Error characterization in iQuam SSTs using triple collocations with satellite measurements[J]. Geophysical Research Letters, 2016, 43(20): 10826-10834.
[31]
MCCLAIN E P, PICHEL W G, WALTON C C. Comparative performance of AVHRR-based multichannel sea surface temperatures[J]. Journal of Geophysical Research: Oceans, 1985, 90(C6): 11587-11601.
[32]
WALTON C C, PICHEL W G, SAPPER J F, et al. The development and operational application of nonlinear algorithms for the measurement of sea surface temperatures with the NOAA polar-orbiting environmental satellites[J]. Journal of Geophysical Research: Oceans, 1998, 103(C12): 27999-28012.
[33]
NANO-ASCIONE N, PICART S S. Scientific validation report for the geostationary satellite sea surface temperature[R]. EUMETSAT, 2023.
[34]
毛志华, 张贤良, 刘建强, 等. HY1C/1D海表温度对Terra/Aqua产品的可替代性分析[J]. 海洋学报, 2023, 45(3):97-112.
MAO Z H, ZHANG X L, LIU J Q, et al. Consistent analysis of sea surface temperature products between HY1C/1D and Terra/Aqua[J]. Haiyang Xuebao, 2023, 45(3): 97-112.
PDF(10447 KB)

Accesses

Citation

Detail

Sections
Recommended

/