Data processing method and application of towed marine three-component magnetic gradiometer

DANG Lingfeng, WU Zhaocai, DONG Chongzhi, ZHANG Jialing

Journal of Marine Sciences ›› 2024, Vol. 42 ›› Issue (2) : 81-90.

PDF(7649 KB)
PDF(7649 KB)
Journal of Marine Sciences ›› 2024, Vol. 42 ›› Issue (2) : 81-90. DOI: 10.3969/j.issn.1001-909X.2024.02.008

Data processing method and application of towed marine three-component magnetic gradiometer

Author information +
History +

Abstract

The towed marine three-component magnetic gradiometer can obtain the geomagnetic three-component and magnetic gradient data at the same time. Compared with the traditional towed geomagnetic total field magnetometer, the towed marine three-component magnetic gradiometer has the advantages of reducing the ship magnetic interference and resisting the influence of geomagnetic daily variation, but it also has some shortcomings such as sensitivity error, zero offset error, orthogonality error and position error. In the actual voyage, a section data measured by the towed marine three-component magnetic gradiometer was calibrated to the total geomagnetic field data measured by the G880 magnetometer, which proved its high stability and reliability. Based on the three component magnetic gradient data, the tensor invariants and the trend of magnetic boundary were obtained, and combined with the Euler deconvolution calculation, the magnetic source body on the measurement line was effectively identified and interpreted. The results show that the towed three-component marine gradiometer can effectively obtain the information of geomagnetic field, component and gradient, which can provide a more effective technical means for marine geomagnetic field measurement.

Key words

geomagnetic three components / calibration of scalar / magnetic gradient tensor / magnetic boundary trend map / Euler deconvolution

Cite this article

Download Citations
DANG Lingfeng , WU Zhaocai , DONG Chongzhi , et al. Data processing method and application of towed marine three-component magnetic gradiometer[J]. Journal of Marine Sciences. 2024, 42(2): 81-90 https://doi.org/10.3969/j.issn.1001-909X.2024.02.008

References

[1]
ISEZAKI N, MATSUDA J I, INOKUCHI H, et al. Shipboard measurement of three components of geomagnetic field[J]. Journal of Geomagnetism and Geoelectricity, 1981, 33(5): 329-333.
[2]
ISEZAKI N. A new shipboard three-component magnetometer[J]. Geophysics, 1986, 51(10): 1992-1998.
[3]
LEE S M, KIM S S. Vector magnetic analysis within the southern Ayu Trough, equatorial Western Pacific[J]. Geophysical Journal International, 2004, 156(2): 213-221.
[4]
KATO H, ISEZAKI N, PARK C H, et al. Characteristics of crustal magnetic structures in the Tsushima (Ulleung) and Japan Basins from vector magnetic anomalies[J]. Earth, Planets and Space, 2007, 59(7): 887-895.
[5]
王文健, 高金耀, 吴招才, 等. 南极普里兹湾船载地磁三分量数据处理分析[J]. 极地研究, 2017, 29(3):349-356.
WANG W J, GAO J Y, WU Z C, et al. Processing and analyses on shipboard three-component magnetometer data from Prydz Bay, Antarctica[J]. Chinese Journal of Polar Research, 2017, 29(3): 349-356.
[6]
赵俊峰. 南海北部海盆三分量磁测结果分析[J]. 热带海洋学报, 2009, 28(4):54-58.
ZHAO J F. Analysis of three-component magnetic data from northern South China Sea Basin[J]. Journal of Tropical Oceanography, 2009, 28(4): 54-58.
[7]
SEAMA N, NOGI Y, ISEZAKI N. A new method for precise determination of the position and strike of magnetic boundaries using vector data of the geomagnetic anomaly field[J]. Geophysical Journal International, 1993, 113(1): 155-164.
[8]
SEAMA N, YAMAMOTO M, ISEZAKI N. A newly developed deep tow three component magnetometer[J]. Eos, 1997, 78(46): 192.
[9]
GEE J S, CANDE S C. A surface-towed vector magnetometer[J]. Geophysical Research Letters, 2002, 29(14): 1670.
[10]
ENGELS M, BARCKHAUSEN U, GEE J S. A new towed marine vector magnetometer: Methods and results from a Central Pacific cruise[J]. Geophysical Journal International, 2008, 172(1): 115-129.
[11]
徐行, 龚跃华, 王功祥, 等. 海洋磁力梯度测量技术在水合物勘探中的应用[J]. 海洋地质与第四纪地质, 2005, 25(3):97-101.
XU X, GONG Y H, WANG G X, et al. Application of the marine magnetic gradient measurements to the exploration of gas hydrate[J]. Marine Geology & Quaternary Geology, 2005, 25(3): 97-101.
[12]
闫辉, 肖昌汉, 沈明, 等. 船载地磁场三分量测量算法的实验验证[J]. 海洋测绘, 2010, 30(3):27-29.
YAN H, XIAO C H, SHEN M, et al. The algorithm verification for geomagnetic three-component computation with shipboard measurement system[J]. Hydrographic Surveying and Charting, 2010, 30(3): 27-29.
[13]
周超烨, 金际航, 李宏武, 等. 三分量磁通门传感器校正的循环优化算法[J]. 海洋测绘, 2010, 30(4):63-66,72.
ZHOU C Y, JIN J H, LI H W, et al. Repeat-optimization algorithm for the calibration of triaxial fluxgate magnetometers[J]. Hydrographic Surveying and Charting, 2010, 30(4): 63-66, 72.
[14]
BRONNER A, MUNSCHY M, SAUTER D, et al. Deep-tow 3C magnetic measurement: Solutions for calibration and interpretation[J]. Geophysics, 2013, 78(3): J15-J23.
[15]
高翔, 严胜刚, 李斌. 三轴磁通门磁梯度仪转向差校正方法研究[J]. 仪器仪表学报, 2016, 37(6):1226-1232.
GAO X, YAN S G, LI B. Study on the steering differential calibration method for magnetic gradiometer base on tri-axis fluxgate[J]. Chinese Journal of Scientific Instrument, 2016, 37(6): 1226-1232.
[16]
高翔, 严胜刚, 李斌. 基于最小二乘的磁通门梯度仪转向差校正方法[J]. 西北工业大学学报, 2016, 34(5):837-842.
GAO X, YAN S G, LI B. Error calibration method for magnetic gradiometer base on least square[J]. Journal of Northwestern Polytechnical University, 2016, 34(5): 837-842.
[17]
黄谟涛, 欧阳永忠, 翟国君, 等. 海面与航空重力测量重复测线精度评估公式注记[J]. 武汉大学学报:信息科学版), 2013, 38(10):1175-1177.
HUANG M T, OU-YANG Y Z, ZHAI G J, et al. Comment on the formulas of accuracy evaluation for multi-line overlapping measurements in ship-borne and airborne gravity survey[J]. Geomatics and Information Science of Wuhan University, 2013, 38(10): 1175-1177.
[18]
吴招才. 磁力梯度张量技术及其应用研究[D].武汉:中国地质大学, 2008.
WU Z C. Magnetic gradient tensor technology and its application[D]. Wuhan: China University of Geoscience, 2008.
[19]
徐熠. 磁梯度张量异常反演算法与算例[D]. 北京: 中国地质大学(北京), 2015.
XU Y. Inversion of magnetic gradient tensor and example[D]. Beijing: China University of Geosciences, 2015.
[20]
PERMANA N R, GUNAWAN B, PRIMASTIKA AA, et al. Characteristics of Palu-Koro Fault based on derivative analysis and Euler deconvolution model of gravity data[J]. Journal of Physics: Conference Series, 2022, 2377(1):012041.
[21]
孙中任, 赵雪娟, 王丽娜. 地面磁测数据正常场改正现行方法探讨[J]. 地质与勘探, 2011, 47(4):679-685.
SUN Z R, ZHAO X J, WANG L N. Discussion of current correction methods of the normal magnetic field for data processing of ground magnetic surveys[J]. Geology and Exploration, 2011, 47(4): 679-685.
[22]
简燕, 李文尧, 武中华. 高精度磁测正常场改正和高度改正精度[J]. 物探与化探, 2011, 35(3):368-370,387.
JIAN Y, LI W Y, WU Z H. A discussion on normal field correction and altitude correction of high-precision magnatic survey[J]. Geophysical and Geochemical Exploration, 2011, 35(3): 368-370, 387.
[23]
ALKEN P, THÉBAULT E, BEGGAN C D, et al. Interna-tional geomagnetic reference field: the thirteenth generation[J]. Earth, Planets and Space, 2021, 73(1): 49.
[24]
HANYU T, NOGI Y, FUJII M Crustal formation and evolution processes in the Natal Valley and Mozambique Ridge, off South Africa[J]. Polar Science, 2017, 13: 66-81.
[25]
WATREMEZ L, LEROY S, D’ACREMONT E, et al. The Limpopo magma-rich transform margin, South Mozambique: 1. insights from deep-structure seismic imaging[J]. Tectonics, 2021, 40(12): e2021TC006915.
[26]
李赫. 转换型大陆边缘地壳结构及构造-沉积演化过程研究:以东非莫桑比克南部陆缘为例[D].杭州:浙江大学, 2021.
LI H Crustal architecture and tectonic-sedimentary evolution of the transform continental margin[D].Hangzhou: Zhejiang University, 2021.
PDF(7649 KB)

Accesses

Citation

Detail

Sections
Recommended

/