
Classification accuracy and influencing factors of Arctic sea ice based on deep learning and Sentinel-1 satellite imagery
SHAO Zhiyuan, ZHAO Jiechen, XIE Longxiang, MU Fangru, XIAO Jing, LIU Minjun, CHEN Xuejing
Journal of Marine Sciences ›› 2024, Vol. 42 ›› Issue (3) : 119-130.
Classification accuracy and influencing factors of Arctic sea ice based on deep learning and Sentinel-1 satellite imagery
The type of sea ice is one of the important attributes of polar sea ice, and the physical properties of multi-year ice are significantly different from those of first-year ice. Therefore, the identifying the types of sea ice is of great significance to the research of polar climate change and the navigation security of ships in ice-covered regions. Satellite remote sensing is an effective method to obtain multi-temporal and large-scale sea ice type information. Based on three deep learning models (ResNet, Vision Transformer, Swin Transformer) and Sentinel-1 satellite dual-polarization synthetic aperture radar (SAR) images, this paper studies the classification method for sea ice in the regions of the Northwest and Northeast Passage in the Arctic. The results showed that the sea ice classification effect of 8×8 pixel slice dataset was better than that of other size slice datasets. Offset processing false color images could effectively reduce the influence of noise on sea ice classification. Among the three deep learning models, the Swin Transformer model had the highest classification accuracy, with the overall accuracy and Kappa coefficient above 98%. Comparing the multi-year ice concentration, it was found that the results of the three models deviate less than 10% from the AMSR2 data.
artificial intelligence(AI) / neural network / Swin Transformer / sea ice classification / multi-year ice / Arctic Passage / synthetic aperture radar(SAR)
[1] |
|
[2] |
|
[3] |
张晰. 极化SAR渤海海冰厚度探测研究[D]. 青岛: 中国海洋大学, 2011.
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
刘泉宏, 张韧, 汪杨骏, 等. 深度学习方法在北极海冰预报中的应用[J]. 大气科学学报, 2022, 45(1):14-21.
|
[9] |
刘启明, 杨树国, 赵莉. 基于深度卷积神经网络的海洋多目标涡旋检测方法[J]. 青岛科技大学学报:自然科学版, 2022, 43(4):120-126.
|
[10] |
崔艳荣. 卷积神经网络在渤海海冰卫星遥感中的应用[D]. 上海: 上海海洋大学, 2020.
|
[11] |
|
[12] |
王芳. 基于Sentinel-1极化数据北冰洋海冰分类研究[D]. 北京: 中国地质大学, 2021.
|
[13] |
|
[14] |
张赛, 樊博文, 禹定峰, 等. 基于多尺度融合网络的辽东湾海冰提取方法研究[J]. 海洋测绘, 2023, 43(1):68-72.
|
[15] |
李金鑫. 基于卷积神经网络的SAR图像分类[D]. 长春: 吉林大学, 2018.
|
[16] |
|
[17] |
|
[18] |
|
[19] |
焦艳, 黄菲, 高松, 等. 基于长短时记忆神经网络的辽东湾海冰延伸期预报方法研究[J]. 中国海洋大学学报:自然科学版, 2020, 50(6):1-11.
|
[20] |
|
[21] |
|
[22] |
|
[23] |
李明慧. 基于深度学习的SAR影像海冰分类研究[D]. 上海: 上海海洋大学, 2019.
|
[24] |
葛梦滢, 高稳, 祝敏, 等. 基于SE-ConvLSTM的时空特征融合SAR图像海冰分类[J]. 遥感技术与应用, 2023, 38(6):1306-1316.
基于合成孔径雷达(SAR)图像的海冰分类已经成为海冰监测的重要基础,但现有方法往往利用图像空间特征,很少考虑时间特征。提出了一种融合时空特征的SAR图像海冰分类网络SE-ConvLSTM。首先使用ConvLSTM对HH和HV极化图像分别提取时空特征,然后将提取的不同层次和通道的时空特征进行拼接,并利用SE通道注意力进行通道特征响应的自适应重新校准,最后利用SoftMax函数进行图像分类。将SI-STSAR-7数据集6个时间步长的图像块作为输入对所提方法与其他分类方法进行了对比实验。结果显示:SE-ConvLSTM在总体情况和分类困难的厚一年冰上分别达到了97.06%和90.01%的精度,表明加入时间信息有助于提高分类准确率。同时,所提网络在生成海冰分布图时对主要冰类型密集度较低的区域和SAR影像的边界位置都具有更好的识别能力。
|
[25] |
|
[26] |
|
[27] |
刘剑锋, 郜利康, 赫晓慧, 等. 结合卷积网络与注意力机制的冰凌提取算法[J]. 遥感信息, 2023, 38(4):49-56.
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
于皓, 田忠翔, 李春花. 基于Sentinel-1双极化数据的北极海域假彩色图像合成方法[J]. 海洋预报, 2022, 39(5):60-69.
|
[35] |
|
[36] |
张珂, 冯晓晗, 郭玉荣, 等. 图像分类的深度卷积神经网络模型综述[J]. 中国图象图形学报, 2021, 26(10):2305-2325.
|
[37] |
刘文婷, 卢新明. 基于计算机视觉的Transformer研究进展[J]. 计算机工程与应用, 2022, 58(6):1-16.
Transformer是一种基于自注意力机制、并行化处理数据的深度神经网络。近几年基于Transformer的模型成为计算机视觉任务的重要研究方向。针对目前国内基于Transformer综述性文章的空白,对其在计算机视觉上的应用进行概述。回顾了Transformer的基本原理,重点介绍了其在图像分类、目标检测、图像分割等七个视觉任务上的应用,并对效果显著的模型进行分析。最后对Transformer在计算机视觉中面临的挑战以及未来的发展趋势进行了总结和展望。
Transformer is a deep neural network based on the self-attention mechanism and parallel processing data. In recent years, Transformer-based models have emerged as an important area of research for computer vision tasks. Aiming at the current blanks in domestic review articles based on Transformer, this paper covers its application in computer vision. This paper reviews the basic principles of the Transformer model, mainly focuses on the application of seven visual tasks such as image classification, object detection and segmentation, and analyzes Transformer-based models with significant effects. Finally, this paper summarizes the challenges and future development trends of the Transformer model in computer vision.
|
/
〈 |
|
〉 |