Journal of Marine Sciences ›› 2024, Vol. 42 ›› Issue (3): 131-141.DOI: 10.3969/j.issn.1001-909X.2024.03.011
Previous Articles Next Articles
WANG Zhihong1(), QU Ke1,3,4,*(), YANG Yuanping2, WANG Xu1,3, GAO Rongze1
Received:
2023-10-12
Revised:
2024-02-26
Online:
2024-09-15
Published:
2024-11-25
CLC Number:
WANG Zhihong, QU Ke, YANG Yuanping, WANG Xu, GAO Rongze. Application of convolutional neural network method in evolution of tidal bore hydrodynamic characteristics[J]. Journal of Marine Sciences, 2024, 42(3): 131-141.
Add to citation manager EndNote|Ris|BibTeX
URL: http://hyxyj.sio.org.cn/EN/10.3969/j.issn.1001-909X.2024.03.011
工况 序号 | 潮前水深 h0/m | 波高H/m | 潮后水深 h1/m | 潮后流速 u1/(m·s-1) |
---|---|---|---|---|
1 | 0.05 | 0.07 | 0.12 | 0.83 |
2 | 0.05 | 0.03 | 0.08 | 0.38 |
Tab.1 Verification of physical experimental conditions
工况 序号 | 潮前水深 h0/m | 波高H/m | 潮后水深 h1/m | 潮后流速 u1/(m·s-1) |
---|---|---|---|---|
1 | 0.05 | 0.07 | 0.12 | 0.83 |
2 | 0.05 | 0.03 | 0.08 | 0.38 |
工况序号 | 潮前水深 h0/m | 波高H/m | 潮后水深 h1/m | 潮后流速 u1/(m·s-1) | Fr | 工况序号 | 潮前水深 h0/m | 波高H/m | 潮后水深 h1/m | 潮后流速 u1/(m·s-1) | Fr |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.36 | 0.14 | 0.50 | 0.678 | 1.288 | 14 | 0.42 | 0.16 | 0.58 | 0.718 | 1.282 |
2 | 0.38 | 0.14 | 0.52 | 0.662 | 1.273 | 15 | 0.44 | 0.16 | 0.60 | 0.703 | 1.269 |
3 | 0.40 | 0.14 | 0.54 | 0.647 | 1.259 | 16 | 0.37 | 0.12 | 0.49 | 0.579 | 1.241 |
4 | 0.42 | 0.14 | 0.56 | 0.633 | 1.247 | 17 | 0.38 | 0.12 | 0.50 | 0.572 | 1.234 |
5 | 0.44 | 0.14 | 0.58 | 0.620 | 1.236 | 18 | 0.40 | 0.13 | 0.53 | 0.603 | 1.241 |
6 | 0.37 | 0.15 | 0.52 | 0.715 | 1.300 | 19 | 0.42 | 0.13 | 0.55 | 0.590 | 1.230 |
7 | 0.38 | 0.15 | 0.53 | 0.706 | 1.292 | 20 | 0.44 | 0.13 | 0.57 | 0.578 | 1.219 |
8 | 0.40 | 0.15 | 0.55 | 0.690 | 1.278 | 21 | 0.37 | 0.11 | 0.48 | 0.533 | 1.221 |
9 | 0.42 | 0.15 | 0.57 | 0.676 | 1.265 | 22 | 0.38 | 0.11 | 0.49 | 0.527 | 1.215 |
10 | 0.44 | 0.15 | 0.59 | 0.662 | 1.253 | 23 | 0.40 | 0.12 | 0.52 | 0.559 | 1.223 |
11 | 0.37 | 0.13 | 0.50 | 0.624 | 1.260 | 24 | 0.42 | 0.12 | 0.54 | 0.547 | 1.212 |
12 | 0.38 | 0.13 | 0.51 | 0.617 | 1.254 | 25 | 0.44 | 0.12 | 0.56 | 0.535 | 1.203 |
13 | 0.40 | 0.16 | 0.56 | 0.734 | 1.296 |
Tab.2 Numerical simulation conditions
工况序号 | 潮前水深 h0/m | 波高H/m | 潮后水深 h1/m | 潮后流速 u1/(m·s-1) | Fr | 工况序号 | 潮前水深 h0/m | 波高H/m | 潮后水深 h1/m | 潮后流速 u1/(m·s-1) | Fr |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.36 | 0.14 | 0.50 | 0.678 | 1.288 | 14 | 0.42 | 0.16 | 0.58 | 0.718 | 1.282 |
2 | 0.38 | 0.14 | 0.52 | 0.662 | 1.273 | 15 | 0.44 | 0.16 | 0.60 | 0.703 | 1.269 |
3 | 0.40 | 0.14 | 0.54 | 0.647 | 1.259 | 16 | 0.37 | 0.12 | 0.49 | 0.579 | 1.241 |
4 | 0.42 | 0.14 | 0.56 | 0.633 | 1.247 | 17 | 0.38 | 0.12 | 0.50 | 0.572 | 1.234 |
5 | 0.44 | 0.14 | 0.58 | 0.620 | 1.236 | 18 | 0.40 | 0.13 | 0.53 | 0.603 | 1.241 |
6 | 0.37 | 0.15 | 0.52 | 0.715 | 1.300 | 19 | 0.42 | 0.13 | 0.55 | 0.590 | 1.230 |
7 | 0.38 | 0.15 | 0.53 | 0.706 | 1.292 | 20 | 0.44 | 0.13 | 0.57 | 0.578 | 1.219 |
8 | 0.40 | 0.15 | 0.55 | 0.690 | 1.278 | 21 | 0.37 | 0.11 | 0.48 | 0.533 | 1.221 |
9 | 0.42 | 0.15 | 0.57 | 0.676 | 1.265 | 22 | 0.38 | 0.11 | 0.49 | 0.527 | 1.215 |
10 | 0.44 | 0.15 | 0.59 | 0.662 | 1.253 | 23 | 0.40 | 0.12 | 0.52 | 0.559 | 1.223 |
11 | 0.37 | 0.13 | 0.50 | 0.624 | 1.260 | 24 | 0.42 | 0.12 | 0.54 | 0.547 | 1.212 |
12 | 0.38 | 0.13 | 0.51 | 0.617 | 1.254 | 25 | 0.44 | 0.12 | 0.56 | 0.535 | 1.203 |
13 | 0.40 | 0.16 | 0.56 | 0.734 | 1.296 |
工况序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
水深/m | 0.40 | 0.40 | 0.38 | 0.37 | 0.42 | 0.39 | 0.41 | 0.45 | 0.46 | 0.38 |
波高/m | 0.16 | 0.13 | 0.14 | 0.11 | 0.12 | 0.13 | 0.12 | 0.15 | 0.17 | 0.15 |
Tab.3 Test conditions
工况序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
水深/m | 0.40 | 0.40 | 0.38 | 0.37 | 0.42 | 0.39 | 0.41 | 0.45 | 0.46 | 0.38 |
波高/m | 0.16 | 0.13 | 0.14 | 0.11 | 0.12 | 0.13 | 0.12 | 0.15 | 0.17 | 0.15 |
工况序号 | 涌潮到达 x=30.0 m 测点处的用时 | x=30.0 m 测点处的最高水位 | ||||
---|---|---|---|---|---|---|
数值模拟值/s | CONV1D模型预测值/s | 相对误差/% | 数值模拟值/m | CONV1D模型预测值/m | 相对误差/% | |
1 | 11.0 | 11.1 | 0.91 | 0.611 | 0.596 | 2.45 |
2 | 12.0 | 12.0 | 0.00 | 0.575 | 0.553 | 3.83 |
3 | 11.5 | 11.5 | 0.00 | 0.567 | 0.531 | 6.35 |
4 | 12.4 | 14.0 | 12.90 | 0.530 | 0.498 | 6.04 |
5 | 12.0 | 12.0 | 0.00 | 0.595 | 0.569 | 4.37 |
6 | 11.7 | 11.7 | 0.00 | 0.575 | 0.547 | 4.87 |
7 | 12.0 | 12.0 | 0.00 | 0.585 | 0.562 | 3.93 |
8 | 11.2 | 11.2 | 0.00 | 0.658 | 0.649 | 1.37 |
9 | 10.8 | 10.7 | 0.93 | 0.684 | 0.690 | 0.88 |
10 | 11.2 | 12.1 | 8.04 | 0.562 | 0.544 | 3.20 |
Tab.4 Error analysis between CONV1D model predicted and numerical simulations of the time taken for the tidal bore reaching and maximum water level at x=30.0 m under different test conditions
工况序号 | 涌潮到达 x=30.0 m 测点处的用时 | x=30.0 m 测点处的最高水位 | ||||
---|---|---|---|---|---|---|
数值模拟值/s | CONV1D模型预测值/s | 相对误差/% | 数值模拟值/m | CONV1D模型预测值/m | 相对误差/% | |
1 | 11.0 | 11.1 | 0.91 | 0.611 | 0.596 | 2.45 |
2 | 12.0 | 12.0 | 0.00 | 0.575 | 0.553 | 3.83 |
3 | 11.5 | 11.5 | 0.00 | 0.567 | 0.531 | 6.35 |
4 | 12.4 | 14.0 | 12.90 | 0.530 | 0.498 | 6.04 |
5 | 12.0 | 12.0 | 0.00 | 0.595 | 0.569 | 4.37 |
6 | 11.7 | 11.7 | 0.00 | 0.575 | 0.547 | 4.87 |
7 | 12.0 | 12.0 | 0.00 | 0.585 | 0.562 | 3.93 |
8 | 11.2 | 11.2 | 0.00 | 0.658 | 0.649 | 1.37 |
9 | 10.8 | 10.7 | 0.93 | 0.684 | 0.690 | 0.88 |
10 | 11.2 | 12.1 | 8.04 | 0.562 | 0.544 | 3.20 |
[1] | 中国水利百科编委会. 中国水利百科全书[M].第二版. 北京: 水利水电出版社,2006:1623. |
Chinese Water Conservancy Encyclopedia Editorial Board. Chinese water conservancy encyclopedia[M]. 2nd ed. Beijing: Water Conservancy and Hydropower Press, 2006: 1623. | |
[2] | 林炳尧, 潘存鸿. 涌潮与激波[J]. 自然杂志, 2015, 37(2):134-142. |
LIN B Y, PAN C H. Tidal bore and shock wave[J]. Chinese Journal of Nature, 2015, 37(2): 134-142. | |
[3] |
黄婷, 张怀, 石耀霖. 基于Boussinesq型方程的钱塘江涌潮数值模拟[J]. 地球物理学报, 2022, 65(1):79-95.
DOI |
HUANG T, ZHANG H, SHI Y L. Numerical simulation of the tidal bore in the Qiantang River based on Boussinesq-type equations[J]. Chinese Journal of Geophysics, 2022, 65(1): 79-95. | |
[4] | DE SAINT-VENANT A J C B. Théorie et équations générales du mouvement non permanent des eaux courantes[J]. Comptes Rendus des séances de l’Académie des Sciences, 1871, 73: 147-154. |
[5] |
苏铭德, 徐昕, 朱锦林, 等. 数值模拟在钱塘江涌潮分析中的应用:Ⅰ.数值计算方法[J]. 力学学报, 1999, 31(5):521-533.
DOI |
SU M D, XU X, ZHU J L, et al. The application of numerical simulation in analysis of Qiantangjiang tide——Ⅰ. Numerical method[J]. Acta Mechanica Sinica, 1999, 31(5): 521-533. | |
[6] | 林炳尧, 黄世昌, 毛献忠. 波状水跃和波状涌潮的分析[J]. 水动力学研究与进展:A辑, 1998, 13(1):106-115. |
LIN B Y, HUANG S C, MAO X Z. Analyses of undular hydraulic jump and undular bore[J]. Journal of Hydrody-namics, 1998, 13(1): 106-115. | |
[7] | 林炳尧, 黄世昌, 周潮生. 涌潮的反射和碰撞:回头潮和交叉潮[J]. 浙江水利水电专科学校学报, 2000, 12(1): 6-10. |
LIN B Y, HUANG S C, ZHOU C S. Reflection and collision of tidal bore: Turning tide and crossing tide[J]. Journal of Zhejiang Water Conservancy and Hydropower College, 2000, 12(1): 6-10. | |
[8] | FAN J, TAO A F, SHI M Q, et al. Flume experiment investigation on propagation characteristics of tidal bore in a curved channel[J]. China Ocean Engineering, 2023, 37(1): 131-144. |
[9] | 戚蓝, 肖厅厅, 张芝永, 等. 涌潮水流CFD数值模拟[J]. 水利水运工程学报, 2019(3):32-40. |
QI L, XIAO T T, ZHANG Z Y, et al. Numerical simulation of tidal bore based on CFD method[J]. Hydro-Science and Engineering, 2019(3): 32-40. | |
[10] | PUTRA Y S, NOVIANI E, NURHASANAH, et al. A numerical study of hydro-hydraulic energy on undular tidal bore phenomenon[J]. Journal of Physics: Conference Series, 2021, 1816(1): 012067. |
[11] | 陈志根. 钱江涌潮的自然文化特征和保护利用[J]. 浙江水利水电学院学报, 2021, 33(2):6-9. |
CHEN Z G. On natural and cultural characteristics and protection and utilization of Qianjiang tidal bore[J]. Journal of Zhejiang University of Water Resources and Electric Power, 2021, 33(2): 6-9. | |
[12] | 鲁海燕, 潘存鸿, 陈刚. 杭州湾天文潮长周期变化对涌潮的影响[J]. 水利水电科技进展, 2023, 43(4):25-30. |
LU H Y, PAN C H, CHEN G. Influence of long-period variation of astronomical tide on tidal bore in Hangzhou Bay[J]. Advances in Science and Technology of Water Resources, 2023, 43(4): 25-30. | |
[13] | 沈阿四. 钱塘江涌潮形成的历史探索[J]. 浙江水利科技, 2002, 30(3):75-76. |
SHEN A S. Historical exploration on the formation of tidal bore in Qiantang River[J]. Zhejiang Hydrotechnics, 2002, 30(3): 75-76. | |
[14] | 金晓剑, 谢骏, 沈利勤. 杭州市钱塘江防潮安全长效管理对策研究[J]. 水利发展研究, 2011, 11(6):64-66. |
JIN X J, XIE J, SHEN L Q. Study on long-term manage-ment countermeasures of moisture-proof safety of Qiantang River in Hangzhou[J]. Water Resources Development Research, 2011, 11(6): 64-66. | |
[15] | 葛路, 张善亮, 许月萍, 等. 耦合BP神经网络的MIKE11模型预报无资料断面水位[J]. 水利水运工程学报, 2023(3):57-67. |
GE L, ZHANG S L, XU Y P, et al. Investigation of water level prediction at ungauged sections by coupled BP neural network and MIKE11 model[J]. Hydro-Science and Engineering, 2023(3): 57-67. | |
[16] | 霍文博, 朱跃龙, 李致家, 等. 新安江模型和支持向量机模型实时洪水预报应用比较[J]. 河海大学学报:自然科学版, 2018, 46(4):283-289. |
HUO W B, ZHU Y L, LI Z J, et al. Comparison of Xin’anjiang model and support vector machine model in the application of real-time flood forecasting[J]. Journal of Hohai University: Natural Sciences, 2018, 46(4): 283-289. | |
[17] | 姬战生, 章国稳, 张振林. 基于卷积神经网络的东苕溪瓶窑水文站水位预报[J]. 水电能源科学, 2021, 39(8):46-49. |
JI Z S, ZHANG G W, ZHANG Z L. Water level forecast of Pingyao hydrological station in Dongtiaoxi based on convolu-tional neural network[J]. Water Resources and Power, 2021, 39(8): 46-49. | |
[18] | MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605. |
[19] | MENTER F R. Improved two-equation k-ω turbulence models for aerodynamic flows[R]//NASA Technical Memorandum 103975, 1992. |
[20] | ZHANG Z Y, PAN C H, ZENG J, et al. Hydrodynamics of tidal bore overflow on the spur dike and its influence on the local scour[J]. Ocean Engineering, 2022, 266: 113140. |
[21] | 潘存鸿, 郑君, 胡成飞, 等. 钱塘江涌潮影响因素研究[J]. 泥沙研究, 2023, 48(1):13-20. |
PAN C H, ZHENG J, HU C F, et al. Study on the impact factors of tidal bore on the Qiantang River[J]. Journal of Sediment Research, 2023, 48(1): 13-20. | |
[22] | WARNER J C, GEYER W R, LERCZAK J A. Numerical modeling of an estuary: A comprehensive skill assessment[J]. Journal of Geophysical Research: Oceans, 2005, 110: C05001. |
[23] | WILLMOTT C J. On the validation of models[J]. Physical Geography, 1981, 2: 184-194. |
[24] | 谢东风, 潘存鸿, 陆波, 等. 基于实测资料的钱塘江涌潮水动力学特性研究[J]. 水动力学研究与进展A辑, 2012, 27(5):501-508. |
XIE D F, PAN C H, LU B, et al. A study on the hydrody-namic characteristics of the Qiantang tidal bore based on field data[J]. Chinese Journal of Hydrodynamics, 2012, 27(5): 501-508. | |
[25] | CHANSON H. Current knowledge in hydraulic jumps and related phenomena: A survey of experimental results[J]. European Journal of Mechanics-B/Fluids, 2008, 28(2): 191-210. |
[26] | MAAS A L, HANNUN A Y, NG A Y. Rectifier nonlinearities improve neural network acoustic models[C]//Proceedings of the 30th International Conference on Machine Learning, Atlanta, Georgia, USA, 2013. |
[27] | SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: A simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15: 1929-1958. |
[28] | KINGMA D P, BA J. Adam: A method for stochastic optimization[Z/OL]. arXiv, 2014: 1412.6980. https://arxiv.org/abs/1412.6980v9. |
[1] | XU Guangjun, SHI Yucheng, YU Yang, XIE Huarong, XIE Wenhong, LIU Jingyuan, LIN Xiayan, LIU Yu, DONG Changming. Recent developments in AI-based oceanic eddy identification [J]. Journal of Marine Sciences, 2024, 42(3): 38-50. |
[2] | ZHUANG Baojiang, TANG Yong, LÜ Xiaohui, YANG Chunguo, WU Zhaocai, LI He. Method for determining the foot point of continental slope in complex geological background: Take the southern continental margin of Mozambique as an example [J]. Journal of Marine Sciences, 2024, 42(1): 13-22. |
[3] | LÜ Zhao, WU Zhiyuan, JIANG Changbo, ZHANG Haojian, GAO Kai, YAN Ren. Numerical investigation of the super typhoon Mangkhut based on the coupled air-sea model [J]. Journal of Marine Sciences, 2023, 41(4): 21-31. |
[4] | ZHANG Liangbin, QU Ke, HUANG Jingxuan, WANG Xu, GUO Lei. Numerical simulation study on influences of onshore wind on overtopping characteristics of solitary wave under coastal seawall [J]. Journal of Marine Sciences, 2023, 41(4): 32-45. |
[5] | FANG Yinxia, LI Jiabiao, YIN Jie, LIU Weiyong, TANG Yong, . Principles and methods for determining the foot of the continental slope [J]. Journal of Marine Sciences, 2022, 40(2): 1-9. |
[6] | SHEN Yuan, CHEN Xiangyu, ZHANG Xijiang, YE Yun, NI Yunlin. Wave diffraction from a 3D circular island [J]. Journal of Marine Sciences, 2022, 40(2): 62-68. |
[7] | ZHANG Chenhao, ZHANG Mingliang, CHAI Chongxu, et al. Numerical study of wave-vegetation interaction based on OpenFOAM software [J]. Journal of Marine Sciences, 2022, 40(1): 42-52. |
[8] | ZHANG Shuyu, DING Tao, LIU Jinbao, et al. Dynamic analysis of tidal bore research based on bibliometric method#br# [J]. Journal of Marine Sciences, 2022, 40(1): 89-100. |
[9] | PAN Cunhong, PAN Dongzi, ZHENG Jun, CHEN Gang. Study on influence of typhoon on tidal bore in Qiantang River [J]. Journal of Marine Sciences, 2020, 38(4): 40-47. |
[10] | LU Yi, CHU Fengyou, DONG Yanhui, ZHU Zhimin, ZHU Jihao, LU Jianggu. Formation of nodules on continental slopes in thenortheast of the South China Sea and itsimplications for cold seep [J]. Journal of Marine Sciences, 2020, 38(2): 16-25. |
[11] | LI Zhi-yong, CHENG Wen-long, JIN Jian-feng, ZHANG Yu-lun, HUANG Zi-han. Impact assessment of tidal bore landscape for dike line adjustment in Jiuxi reach of Qiantang River [J]. Journal of Marine Sciences, 2019, 37(3): 79-85. |
[12] | WU Zhi-yuan, JIANG Chang-bo, HE Zhi-yong, CHEN Jie, DENG Bin, XIE Zhen-dong. Coupled atmosphere and wave model and its application in an idealized typhoon [J]. Journal of Marine Sciences, 2019, 37(2): 9-15. |
[13] | SU Yin-qiu, PAN Guo-fu, YU Liang-liang, YANG Wan-kang. Response of bay water exchange to water intake and drainage project [J]. Journal of Marine Sciences, 2018, 36(4): 76-83. |
[14] | ZHANG Fu-kun, ZOU Chuan-ling, LIU Shu-jing, XU Xian, LIU Wei. 3D-numerical simulation on distribution of brine discharge from seawater desalination plant in the sea area near Jinjiang [J]. Journal of Marine Sciences, 2018, 36(2): 12-18. |
[15] | WU Ze-zhou,ZHOU Feng. A method for estimating boundary exchanges in the East China Sea based on satellite drifter trajectories [J]. Journal of Marine Sciences, 2018, 36(1): 27-34. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||