Journal of Marine Sciences ›› 2024, Vol. 42 ›› Issue (3): 88-98.DOI: 10.3969/j.issn.1001-909X.2024.03.007
Previous Articles Next Articles
JIN Yang1(), HAN Lei1, JIN Meibing1,2,*(), DONG Changming1,2
Received:
2024-03-04
Revised:
2024-05-11
Online:
2024-09-15
Published:
2024-11-25
CLC Number:
JIN Yang, HAN Lei, JIN Meibing, DONG Changming. Intelligent wave forecasting and evaluation along the southeast coast of China based on ConvLSTM method[J]. Journal of Marine Sciences, 2024, 42(3): 88-98.
Add to citation manager EndNote|Ris|BibTeX
URL: http://hyxyj.sio.org.cn/EN/10.3969/j.issn.1001-909X.2024.03.007
试验编号 | 输入的物理要素 |
---|---|
2.1 | SWH |
2.2 | SWH、平均波向 |
2.3 | 海面10 m经向风速、海面10 m纬向风速 |
2.4 | SWH、海面10 m 经向风速、海面10 m纬向风速 |
2.5 | SWH、平均波向、海面10 m纬向风速 |
2.6 | SWH、平均波向、海面10 m经向风速、海面10 m纬向风速 |
Tab.1 ConvLSTM model configuration for the sensitivity test of physical elements
试验编号 | 输入的物理要素 |
---|---|
2.1 | SWH |
2.2 | SWH、平均波向 |
2.3 | 海面10 m经向风速、海面10 m纬向风速 |
2.4 | SWH、海面10 m 经向风速、海面10 m纬向风速 |
2.5 | SWH、平均波向、海面10 m纬向风速 |
2.6 | SWH、平均波向、海面10 m经向风速、海面10 m纬向风速 |
Fig.8 Observed SWH and predicted SWH of 2023 spring: ERA5 (a-d), ConvLSTM model based on experiment 2.4 configuration (e-h) and the relative variability between model and ERA5 (i-l)
[1] | SHENG W N. Wave energy conversion and hydrodynamics modelling technologies: A review[J]. Renewable and Sustainable Energy Reviews, 2019, 109: 482-498. |
[2] | REGUERO B G, LOSADA I J, MÉNDEZ F J. A recent increase in global wave power as a consequence of oceanic-warming[J]. Nature Communications, 2019, 10: 205. |
[3] | KAMPHUIS J W. Introduction to coastal engineering and management[M]. Singapore: World Scientific, 2020. |
[4] | WANG W X, TANG R C, LI C, et al. A BP neural network model optimized by mind evolutionary algorithm for predicting the ocean wave heights[J]. Ocean Engineering, 2018, 162: 98-107. |
[5] | YEGANEH-BAKHTIARY A, EYVAZOGHLI H, SHABAKHTY N, et al. Machine learning prediction of wave characteristics: Comparison between semi-empirical approaches and DT model[J]. Ocean Engineering, 2023, 286: 115583. |
[6] | 刘凡, 陆小敏, 徐丹, 等. 海浪预报方法研究进展[J]. 河海大学学报:自然科学版, 2021, 49(5):387-393. |
LIU F, LU X M, XU D, et al. Research progress of ocean waves forecasting method[J]. Journal of Hohai University: Natural Sciences, 2021, 49(5): 387-393. | |
[7] | BRETSCHNEIDER C L. Hurricane design wave practices[J]. Journal of the Waterways and Harbors Division, 1957, 83: 1-33. |
[8] | NEUMANN G, PIERSON W J. A detailed comparison of theoretical wave spectra and wave forecasting methods[J]. Deutsche Hydrographische Zeitschrift, 1957, 10(4): 134-146. |
[9] | 文圣常. 普遍风浪谱及其应用[J]. 山东海洋学院学报,1960:15-43. |
WEN S C. Universal wind wave spectrum and its applications[J]. Journal of Shandong Ocean University, 1960: 15-43. | |
[10] | KAMRANZAD B, ETEMAD-SHAHIDI A, KAZEMINEZHAD M H. Wave height forecasting in Dayyer, the Persian Gulf[J]. Ocean Engineering, 2011, 38(1): 248-255. |
[11] | GELCI R, CAZALÉ H, VASSAL J. La méthode des densités spectroangulaires[J]. Comité Central Océanogr, 1957, 9: 416-435. |
[12] | DURRANT T, GREENSLADE D, HEMER M, et al. A global wave hindcast focussed on the Central and South Pacific[R]//The Centre for Australian Weather and Climat Research Technical Report No. 070, 2014. |
[13] | BOOIJ N, RIS R C, HOLTHUIJSEN L H. A third-generation wave model for coastal regions: 1. Model descrip-tion and validation[J]. Journal of Geophysical Research: Oceans, 1999, 104(C4): 7649-7666. |
[14] | TOLMAN H L. User manual and system documentation of WAVEWATCH-III TM version 3.14[R]. [S.l.]: NECP, 2009. |
[15] | 文圣常, 钱成春, 叶安乐, 等. 基于选定风浪方向谱的海浪模拟方法(英文)[J]. 青岛海洋大学学报, 1999(3): 345-397. |
WEN S C, QIAN C C, YE A L, et al. Wave modeling based on adopted wind-wave direction spectrum[J]. Journal of Ocean University of Qingdao, 1999 (3): 345-397. | |
[16] | 袁业立, 华锋, 潘增弟, 等. LAGFD-WAM海浪数值模式:Ⅱ.区域性特征线嵌入格式及其应用[J]. 海洋学报, 1992, 14(6):12-24. |
YUAN Y L, HUA F, PAN Z D, et al. LAGFD-WAM numerical model of ocean waves—Ⅱ. Embedding scheme of regional characteristic lines and its application[J]. Acta Oceanologica Sinica, 1992, 14(6): 12-24. | |
[17] | MAKARYNSKYY O. Improving wave predictions with artificial neural networks[J]. Ocean Engineering, 2004, 31(5/6): 709-724. |
[18] | ZUBIER K. Using an artificial neural network for wave height forecasting in the Red Sea[J]. Indian Journal of Geo Marine Sciences, 2020, 49: 184-191. |
[19] | CORNEJO-BUENO L, NIETO-BORGE J C, GARCÍA-DÍAZ P, et al. Significant wave height and energy flux prediction for marine energy applications: A grouping genetic algorithm-extreme learning machine approach[J]. Renewable Energy, 2016, 97: 380-389. |
[20] | KUMAR N K, SAVITHA R, MAMUN A A. Ocean wave height prediction using ensemble of extreme learning machine[J]. Neurocomputing, 2018, 277: 12-20. |
[21] | PUSHPAM P M M, ENIGO V S F. Forecasting significant wave height using RNN-LSTM Models[C]//2020 4th Inter-national Conference on Intelligent Computing and Control Systems (ICICCS). Madurai, India. IEEE, 2020: 1141-1146. |
[22] | GERS F A, SCHRAUDOLPH N N, SCHMIDHUBER J. Learning precise timing with LSTM recurrent networks[J]. Journal of Machine Learning Research, 2002, 3: 115-143. |
[23] |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
DOI PMID |
[24] | HU H G, VAN DER WESTHUYSEN A J, CHU P, et al. Predicting Lake Erie wave heights and periods using XGBoost and LSTM[J]. Ocean Modelling, 2021, 164: 101832. |
[25] | FAN S T, XIAO N H, DONG S. A novel model to predict significant wave height based on long short-term memory network[J]. Ocean Engineering, 2020, 205: 107298. |
[26] | SHI X J, CHEN Z R, WANG H, et al. Convolutional LSTM network: A machine learning approach for precipitation nowcasting[J]. Advances in Neural Information Processing Systems, 2015: 802-810. |
[27] | CHOI H, PARK M, SON G, et al. Real-time significant wave height estimation from raw ocean images based on 2D and 3D deep neural networks[J]. Ocean Engineering, 2020, 201: 107129. |
[28] | ZHOU S Y, XIE W H, LU Y X, et al. ConvLSTM-based wave forecasts in the South and East China Seas[J]. Frontiers in Marine Science, 2021, 8: 680079. |
[1] | SHAO Zhiyuan, ZHAO Jiechen, XIE Longxiang, MU Fangru, XIAO Jing, LIU Minjun, CHEN Xuejing. Classification accuracy and influencing factors of Arctic sea ice based on deep learning and Sentinel-1 satellite imagery [J]. Journal of Marine Sciences, 2024, 42(3): 119-130. |
[2] | LIU Yang, LI Sanzhong, ZOU Zhuoyan, SUO Yanhui, SUN Yi. High-precision seafloor topographic mapping based on data-knowledge-driven: An example from the South China Sea [J]. Journal of Marine Sciences, 2024, 42(3): 142-152. |
[3] | DONG Changming, WANG Ziyun, XIE Huarong, XU Guangjun, HAN Guoqing, ZHOU Shuyi, XIE Wenhong, SHEN Xiangyu, HAN Lei. Prospect of artificial intelligence in oceanography [J]. Journal of Marine Sciences, 2024, 42(3): 2-27. |
[4] | LU Yuting, GUO Wenkang, DING Jun, WANG Linfeng, LI Xiaohui, WANG Jiuke. Progress and challenges of artificial intelligence wave forecasting [J]. Journal of Marine Sciences, 2024, 42(3): 28-37. |
[5] | XU Guangjun, SHI Yucheng, YU Yang, XIE Huarong, XIE Wenhong, LIU Jingyuan, LIN Xiayan, LIU Yu, DONG Changming. Recent developments in AI-based oceanic eddy identification [J]. Journal of Marine Sciences, 2024, 42(3): 38-50. |
[6] | DI Ya’nan, ZHAO Ruoxuan, XU Jianzhou. Deep learning-based histopathological analysis and its potential application in marine monitoring: A review and case study [J]. Journal of Marine Sciences, 2024, 42(3): 64-74. |
[7] | CHEN Xiangyu, YU Jiangmei, SHEN Yuan, NI Yunlin, LU Fan. The applicability study of different typhoon wind fields in typhoon wave simulation in Zhejiang sea area [J]. Journal of Marine Sciences, 2024, 42(2): 15-25. |
[8] | JIN Chenxin, CUI Zijian, LIANG Chujin, LIN Feilong, CHEN Zhentao. Establishment and evaluation of a Velocity-Gaussian Function Model for internal solitary waves [J]. Journal of Marine Sciences, 2024, 42(2): 55-61. |
[9] | JIE Tianyu, ZHOU Jianping, TAO Chunhui, WANG Hanchuang, LI Qianyu, WU Tao, LIU Long. Acoustic characteristics of rocks from the SWIR hydrothermal fields [J]. Journal of Marine Sciences, 2024, 42(1): 1-12. |
[10] | KE Lei, WU Shaowei. Acoustic propagation characteristics of horizontally varying double duct waveguides under Arctic ice [J]. Journal of Marine Sciences, 2024, 42(1): 47-57. |
[11] | FU Dianfu, XIE Botao, HUANG Bigui, JIN Weifang, MOU Yong, LIN Feilong. Study on frequency shift of typhoon-excited near-inertial waves in northwestern South China Sea [J]. Journal of Marine Sciences, 2023, 41(4): 12-20. |
[12] | ZHANG Liangbin, QU Ke, HUANG Jingxuan, WANG Xu, GUO Lei. Numerical simulation study on influences of onshore wind on overtopping characteristics of solitary wave under coastal seawall [J]. Journal of Marine Sciences, 2023, 41(4): 32-45. |
[13] | ZHOU Yiming, YANG Lihua, HUAN Caiyun, LIU Rong. Analysis of measured wave characteristics in the coastal waters of Cangnan, Zhejiang Province [J]. Journal of Marine Sciences, 2023, 41(3): 43-55. |
[14] | LIU Guilin, FANG Dan, SONG Shichun, LIU Bohu. Calculation of design wave height and its application base on independent sample [J]. Journal of Marine Sciences, 2023, 41(3): 73-82. |
[15] | CUI Minghui, TU Junbiao, MENG Lingpeng, GUO Xingjie, SU Ni, FAN Daidu. Wave characteristics and their influencing factors on Nanhui tidal flats in the Changjiang Estuary [J]. Journal of Marine Sciences, 2023, 41(2): 28-44. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||