According to the numerical forecast data of ECMWF in the past 10 years, we analyzed the spatial distribution of sea surface temperature, sea surface wind field and effective wave height of the four seasons and the whole year of the tuna purse seine fishery in the Western and Central Pacific Ocean, and studied the spatial and temporal variation characteristics using Empirical Orthogonal Function (EOF) and Empirical Mode Decomposition (EMD). Research shows that the spatial and temporal distributions of sea surface temperature, sea surface wind field, effective wave height have significant changes; the first, second, third modal variance contribution rates of sea surface temperature are 62.59%, 10.98%, 6.7%, and have 0.5 year, 1 year, 3 year cycle changes; the first, second, third modal variance contribution rates of sea surface wind field are 40.29%, 18.39%, 9.36%, and have 0.2-0.25 year, 0.5 year, 1 year cycle changes; the first, second, third modal variance contribution rates of effective wave height are 44.17%,17.35%, 10.96%, and have 0.2-0.3 year, 0.5-1 year, 1 year cycle changes.
Key words
sea surface temperature /
sea surface wind field /
effective wave height /
EOF analysis /
EMD analysis
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] MIAO Zhen-qing, HUANG Xi-mao. Ocean tuna fishery[M]. Shanghai: Shanghai Science and Technology Literature Publishing House, 2003.
苗振清,黄锡冒.远洋金枪鱼渔业[M].上海:上海科学技术文献出版社,2003.
[2] WANG Yu. Research on the development and utilization of world tuna fishery resources[M]. Beijing: Ocean Press, 2000.
王宇.世界金枪鱼渔业资源开发利用研究[M]. 北京:海洋出版社, 2000.
[3] TRIGUEROS-SALMERON J A, ORTEGA-GARCIA S. Spatial and seasonal variation of relative abundance of the skipjack tuna Katsuwonus pelamis, (Linnaeus, 1758) in the Eastern Pacific Ocean (EPO) during 1970-1995[J]. Fisheries Research, 2001, 49(3):227-232.
[4] XIE Ying-liang. Current status and prospects of tuna fishery in the Western and Central Pacific Ocean(1)[J]. Fishery Information and Strategy, 2002, 17(9):18-20.
谢营梁.中西太平洋金枪鱼渔业的现状和展望(1)[J]. 渔业信息与战略, 2002, 17(9):18-20.
[5] LEHODEY P, BERTIGNAC M, HAMPTON J, et al. El Niño Southern Oscillation and tuna in the western Pacific[J]. Nature, 1997, 389(6 652):715-718.
[6] MATEAR R J, CHAMBERLAIN M A, SUN C, et al. Climate change projection for the western tropical Pacific Ocean using a high-resolution ocean model: Implications for tuna fisheries[J]. Deep-Sea Research Part II, 2015, 113(1):22-46.
[7] ZHU Jiang-feng, DAI Xiao-jie. China development stagey on tuna fishery in western and central Pacific[J]. Chinese Fisheries Economics, 2009, 27(1):115-119.
[8] TANG Feng-hua, CUI Xue-sen, YANG Sheng-long, et al. GIS analysis on effect of temporal and spatial patterns of marine environment on purse seine fishery in the western and central Pacific[J]. South China Fisheries Science, 2014, 10(2):18-26.
[9] HU Qi-wei, CHEN Xin-jun, XU Liang-qi, et al. Clustering of fisheries in the tuna purse seine in the Western and Central Pacific Ocean and its causes[J]. Haiyang Xuebao, 2016, 38(12):66-75.
胡启伟,陈新军,徐良琦,等.中西太平洋金枪鱼围网渔场聚类及其原因分析[J].海洋学报, 2016, 38(12):66-75.
[10] GUO Ai, CHEN Xin-jun, FAN Jiang-tao. Spatial and temporal distribution of skipjack and relationship with ENSO in the West-central Pacific Ocean[J]. Fisheries Science, 2010, 29(10):591-596.
[11] HU Kui-wei, ZHU Guo-ping, WANG Xue-fang, et al. Spatio-temporal distribution of skipjack tuna(Katsuwonus pelamis) abundance and its relationship with sea surface temperature in Western and Central Pacific Ocean[J]. Marine Fisheries, 2011, 33(4):417-422.
[12] LONG Hua. The effect of temperature on fish survival[J]. Journal of Zhongshan University: Natural Science Edition, 2005(B06):254-257.
龙华.温度对鱼类生存的影响[J].中山大学学报:自然科学版, 2005(B06):254-257.
[13] ZHOU Su-fang. The impact of El Niño-Southern Oscillation on the fishing grounds of the catfish nets in the Western and Central Pacific Ocean[J]. Chinese Aquatic Science, 2005, 12(6):739-744.
周甦芳.厄尔尼诺-南方涛动现象对中西太平洋鲣鱼围网渔场的影响[J].中国水产科学, 2005, 12(6):739-744.
[14] LIN Long-shan, DING Feng-yuan, CHENG Jia-hua. Analysis of catch composition of tuna purse seine in the Western and Central Pacific Ocean[J]. Marine fishery, 2005, 27(1):10-14.
林龙山,丁峰元,程家骅.中西太平洋金枪鱼围网渔获物组成分析[J].海洋渔业,2005, 27(1):10-14.
[15] MATEAR R J, CHAMBERLAIN M A, SUN C, et al. Climate change projection for the western tropical Pacific Ocean using a high-resolution ocean model: Implications for tuna fisheries[J]. Deep-Sea Research Part II, 2015, 113(1):22-46.
[16] MUGO R, SAITOH S, NIHIRA A, et al. Habitat characteristics of skipjack tuna (Katsuwonus pelamis) in the western North Pacific: a remote sensing perspective[J]. Fisheries Oceanography, 2010, 19(5):382-396.
[17] LANGLEY A, BRIAND K, KIRBY D S, et al. Influence of oceanographic variability on recruitment of yellowfin tuna (Thunnus albacares) in the western and central Pacific Ocean[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2009, 66(9): 1 462-1 477.
[18] WU C C, CHIANG H C, CHEN K S, et al. Population structure of albacore (Thunnus alalunga) in the Northwestern Pacific Ocean inferred from mitochondrial DNA[J]. Fisheries Research, 2009, 95(1):125-131.
[19] ZAINUDDIN M, KIYOFUJI H, SAITOH K, et al. Using multi-sensor satellite remote sensing and catch data to detect ocean hot spots for albacore (Thunnus alalunga) in the northwestern North Pacific[J]. Deep-Sea Research Part II, 2006, 53(3):419-431.
[20] ZAINUDDIN M, SAITOH K, SAITOH S E I I. Albacore (Thunnus alalunga) fishing ground in relation to oceanographic conditions in the western North Pacific Ocean using remotely sensed satellite data[J]. Fisheries Oceanography, 2008, 17(2): 61-73.
[21] TSENG C T, SUN C L, YEH S Z, et al. Spatio-temporal distributions of tuna species and potential habitats in the Western and Central Pacific Ocean derived from multi-satellite data[J]. International Journal of Remote Sensing, 2010, 31(17-18): 4 543-4 558.
[22] DE OLIVEIRA F S C, GHERARDI D F M, STECH J L. The relationship between multi-sensor satellite data and Bayesian estimates for skipjack tuna catches in the South Brazil Bight[J]. International Journal of Remote Sensing, 2010, 31(15): 4 049-4 067.
[23] YEN K W, LU H J, CHANG Y, et al. Using remote-sensing data to detect habitat suitability for yellowfin tuna in the Western and Central Pacific Ocean[J]. International Journal of Remote Sensing, 2012, 33(23): 7 507-7 522.