[1] KERR Y, WALDTEUFEL P, WIGNERON J P, et al. The SMOS mission: New tool for monitoring key elements of the global water cycle[J]. P IEEE, 2010, 98(5): 666-687. [2] KERR Y, MECKLENBURG S, DELWART S, et al. SMOS after five years in operations: from tentative research to operational applications[J]. Theor Appl Genet, 2015, 99(1-2): 289-295. [3] LE-VINE D M, LAGERLOEF G S, TORRUSIO S E. Aquarius and remote sensing of sea surface salinity from space[J]. P IEEE, 2010, 98(5): 688-703. [4] LE-VINE D M, DINNAT E P, LAGERLOEF G S E, et al. Aquarius: Status and recent results[J]. Radio Sci, 2016, 49(9): 709-720. [5] DINNAT E P, VINE D M L, PIEPMEIER J R, et al. Aquarius L-band radiometers calibration using cold sky observations[J]. IEEE J-STARS, 2016, 8(12): 5 433-5 449. [6] PABLOS M, PILES M, GONZÁLEZ-GAMBAU V, et al. SMOS and Aquarius radiometers: inter-comparison over selected targets[J]. IEEE J-STARS, 2014, 7(9): 3 833-3 844. [7] TORRES F, CORBELLA I, WU L, et al. Minimization of image distortion in SMOS brightness temperature maps over the ocean[J]. IEEE Geosci Remote S, 2011, 9(1): 18-22. [8] CAMPS A, VALL-LLOSSERA M, BATRES L, et al. Retrieving sea surface salinity with multiangular L-band brightness temperatures: Improvement by spatiotemporal averaging[J]. Radio Sci, 2016, 40(2): 1-13. [9] HEJAZIN Y, JONES W L, SANTOS-GARCIA A, et al. A roughness correction for Aquarius sea surface salinity using the CONAE microwave radiometer[J]. IEEE J-STARS, 2016, 8(12): 5 500-5 510. [10] MEISSNER T, WENTZ F, RICCIARDULLI L. The emission and scattering of L-band microwave radiation from rough ocean surfaces and wind speed measurements from the Aquarius sensor[J]. J Geophys Res: Oceans, 2014, 119(8): 6 499-6 522. [11] YUEH S, TANG W, FORE A, et al. Aquarius geophysical model function and combined active passive algorithm for ocean surface salinity and wind retrieval[J]. J Geophys Res: Oceans, 2014, 119(8): 5 360-5 379. [12] MELNICHENKO O, HACKER P, MAXIMENKO N, et al. Optimum interpolation analysis of Aquarius sea surface salinity[J]. J Geophys Res: Oceans, 2016, 121(1): 602-616. [13] XIE P, BOYER T, BAYLER E, et al. An in situ-satellite blended analysis of global sea surface salinity[J]. J Geophys Res: Oceans, 2014, 119(9): 6 140-6 160. [14] BOUTIN J, MARTIN N, REVERDIN G, et al. Sea surface salinity under rain cells: SMOS satellite and in situ drifters observations[J]. J Geophys Res: Oceans, 2014, 119(8): 5 533-5 545. [15] DRUCKER R, RISER S C. Validation of Aquarius sea surface salinity with Argo: analysis of error due to depth of measurement and vertical salinity stratification[J]. J Geophys Res: Oceans, 2014, 119(7): 4 626-4 637. [16] HERNANDEZ O, BOUTIN J, KOLODZIEJCZYK N, et al. SMOS salinity in the subtropical North Atlantic salinity maximum: 1. Comparison with Aquarius and in situ salinity[J]. J Geophys Res: Oceans, 2014, 119(12): 8 878-8 896. [17] REAGAN J, BOYER T, ANTONOV J, et al. Comparison analysis between Aquarius sea surface salinity and World Ocean Database in situ analyzed sea surface salinity[J]. J Geophys Res: Oceans, 2014, 119(11): 8 122-8 140. [18] TANG Wen-qing, YUEH S H, FORE A G. A Hayashi Validation of Aquarius sea surface salinity with in situ measurements from Argo floats and moored buoys[J]. J Geophys Res: Oceans, 2014, 119(9): 6171-6189 [19] LAGERLOEF G, KAO H Y, MEISSNER T, et al. Aquarius salinity validation analysis; data version 4.0[R]. 2015. ftp://podaac.jpl.nasa.gov/allData/aquarius/docs/v4/AQ-014-PS-0016 _Aquarius Salinity Data ValidationAnalysis_DatasetVersion4.0 and3.0 .pdf. [20] MANNSHARDT E, SUCIC K, FUENTES M, et al. Comparison of distributional statistics of Aquarius and Argo sea surface salinity measurements[J]. J Atmos Oceanic Technol, 2015, 33(1): 151117145230002. [21] LEE T. Consistency of Aquarius sea surface salinity with Argo products on various spatial and temporal scales[J]. Geophys Res Lett, 2016, 43(8): 3 857-3 864. [22] BHASKAR T U, JAYARAM C. Evaluation of Aquarius sea surface salinity with Argo sea surface salinity in the tropical Indian Ocean[J]. IEEE Geosci Remote S, 2015, 12(6): 1 292-1 296. [23] TZORTZI E, SROKOSZ M, GOMMENGINGER C, et al. Spatial and temporal scales of variability in tropical Atlantic sea surface salinity from the SMOS and Aquarius satellite missions[J]. Remote Sens Environ, 2016, 180: 418-430. [24] BINGHAM F M, LEE T. Space and time scales of sea surface salinity and freshwater forcing variability in the global ocean[J]. J Geophys Res: Oceans, 2016, 122(4),doi: 10.1002/2016JC012216. [25] VINOGRADOVA N T, PONTE R M. Small-scale variability in sea surface salinity and implications for satellite-derived measurements[J]. J Atmos Oceanic Technol, 2013, 30(11): 2 689-2 694. [26] VINOGRADOVA N T, PONTE R M. Assessing temporal aliasing in satellite-based surface salinity measurements[J]. J Atmos Oceanic Technol, 2012, 29: 1 391-1 400. [27] JOHNSON J T, ZHANG M. Theoretical study of the small slope approximation for ocean polarimetric thermal emission[J]. IEEE T Geosci Remote, 1999, 37(5): 2 305-2 316. [28] GUIMBARD S, GOURRION J, PORTABELLA M, et al. SMOS semi-empirical ocean forward model adjustment[J]. IEEE T Geosci Remote, 2012, 50(5): 1 676-1 687. [29] TURIEL A, NIEVES V, GARCÍA-LADONA E, et al. The multifractal structure of satellite sea surface temperature maps can be used to obtain global maps of streamlines[J]. Ocean Sci, 2009, 5(4): 447-460. [30] MEISSNER T, WENTZ F, HILBURN K, et al. The Aquarius salinity retrieval algorithm[R]. IGARSS, 2012. [31] YUEH S, CHAUBELL J. Sea surface salinity and wind retrieval using combined passive and active L-band microwave observations[J]. IEEE T Geosci Remote, 2012, 50(4): 1 022-1 032. [32] REYNOLDS R W, CHELTON D B. Comparisons of daily sea surface temperature analyses for 2007-08[J]. J Climate, 2010, 23(13): 3 545-3 562. |