Journal of Marine Sciences ›› 2023, Vol. 41 ›› Issue (1): 3-13.DOI: 10.3969-j.issn.1001-909X.2023.01.001
Previous Articles Next Articles
CHEN Yining1,2(), CHEN Luzhen3,4,*()
Received:
2022-10-30
Revised:
2023-01-25
Online:
2023-03-15
Published:
2023-04-28
CLC Number:
CHEN Yining, CHEN Luzhen. Interactions between vegetation and sediment carbon pools within coastal blue carbon ecosystems: A review and perspective[J]. Journal of Marine Sciences, 2023, 41(1): 3-13.
Add to citation manager EndNote|Ris|BibTeX
URL: http://hyxyj.sio.org.cn/EN/10.3969-j.issn.1001-909X.2023.01.001
[1] | NELLEMANN C, CORCORAN E, DUARTE C M, et al. Blue carbon: The role of healthy oceans in binding carbon: A rapid response assessment[M]. Norway: Birkeland Trykkeri AS, 2009. |
[2] | MACREADIE P I, COSTA M D P, ATWOOD T B, et al. Blue carbon as a natural climate solution[J]. Nature Reviews Earth & Environment, 2021, 2(12): 826-839. |
[3] |
PENDLETON L, DONATO D C, MURRAY B C, et al. Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems[J]. PLoS ONE, 2012, 7(9): e43542.
DOI URL |
[4] | HOWARD J, HOYT S, ISENSEE K, et al. Coastal blue carbon:Methods for assessing carbon stocks and emissions factors in mangroves, tidal salt marshes, and seagrasses[M]. Arlington: Conservational International, Intergovernmental Oceanographic Commission of UNESCO, International Union for Conservation of Nature, 2014. |
[5] | 陈鹭真, 卢伟志, 林光辉. 滨海蓝碳:红树林盐沼海草床碳储量和碳排放因子评估方法[M]. 厦门: 厦门大学出版社, 2018:189. |
CHEN L Z, LU W Z, LIN G H. Coastal blue carbon: Methods for assessing carbon stocks and emissions factors in mangroves, tidal salt marshes, and seagrass meadows[M]. Xiamen: Xiamen University Press, 2018: 189. | |
[6] |
MIDDELBURG J J, NIEUWENHUIZE J, LUBBERTS R K, et al. Organic carbon isotope systematics of coastal marshes[J]. Estuarine, Coastal and Shelf Science, 1997, 45(5):681-687.
DOI URL |
[7] |
MIDDLETON B A, MCKEE K L. Degradation of mangrove tissues and implications for peat formation in Belizean island forests[J]. Journal of Ecology, 2001, 89(5): 818-828.
DOI URL |
[8] | KENNEDY H, BEGGINS J, DUARTE C M, et al. Seagrass sediments as a global carbon sink: Isotopic constraints[J]. Global Biogeochemical Cycles, 2010, 24(4): GB4026. |
[9] | CHMURA G L, ANISFELD S C, CAHOON D R, et al. Global carbon sequestration in tidal, saline wetland soils[J]. Global Biogeochemical Cycles, 2003, 17(4): 1111. |
[10] |
DUARTE C M, MIDDELBURG J J, CARACO N. Major role of marine vegetation on the oceanic carbon cycle[J]. Biogeosciences, 2005, 2(1): 1-8.
DOI URL |
[11] | WANG F M, SANDERS C J, SANTOS I R, et al. Global blue carbon accumulation in tidal wetlands increases with climate change[J]. National Science Review, 2021, 8(9): nwaa296. |
[12] | CHEN L Z, CHEN Y N, ZHANG Y H, et al. Mangrove carbon sequestration and sediment deposition changes under cordgrass invasion[M]//Dynamic sedimentary environments of mangrove coasts. Amsterdam: Elsevier, 2021: 473-509. |
[13] |
DONATO D C, KAUFFMAN J B, MURDIYARSO D, et al. Mangroves among the most carbon-rich forests in the tropics[J]. Nature Geoscience, 2011, 4(5): 293-297.
DOI |
[14] | 林鹏. 中国红树林生态系[M]. 北京: 科学出版社, 1997:85-91. |
LIN P. Mangrove ecosystem in China[M]. Beijing: Science Press, 1997: 85-91. | |
[15] |
ROVAI A S, TWILLEY R R, CASTAÑEDA-MOYA E, et al. Global controls on carbon storage in mangrove soils[J]. Nature Climate Change, 2018, 8(6): 534-538.
DOI |
[16] |
FU C C, LI Y, ZENG L, et al. Stocks and losses of soil organic carbon from Chinese vegetated coastal habitats[J]. Global Change Biology, 2021, 27(1): 202-214.
DOI URL |
[17] | DUARTE C M, MARBÀ N, GACIA E, et al. Seagrass community metabolism: Assessing the carbon sink capacity of seagrass meadows[J]. Global Biogeochemical Cycles, 2010, 24(4): GB4032. |
[18] |
FOURQUREAN J W, DUARTE C M, KENNEDY H, et al. Seagrass ecosystems as a globally significant carbon stock[J]. Nature Geoscience, 2012, 5(7): 505-509.
DOI |
[19] |
KELLEWAY J J, CAVANAUGH K, ROGERS K, et al. Review of the ecosystem service implications of mangrove encroachment into salt marshes[J]. Global Change Biology, 2017, 23(10): 3967-3983.
DOI PMID |
[20] |
LIU W W, CHEN X C, STRONG D R, et al. Climate and geographic adaptation drive latitudinal clines in biomass of a widespread saltmarsh plant in its native and introduced ranges[J]. Limnology and Oceanography, 2020, 65(6):1399-1409.
DOI URL |
[21] |
KELLEWAY J J, SAINTILAN N, MACREADIE P I, et al. Seventy years of continuous encroachment substantially increases 'blue carbon' capacity as mangroves replace intertidal salt marshes[J]. Global Change Biology, 2016, 22(3): 1097-1109.
DOI PMID |
[22] |
YANDO E S, OSLAND M J, WILLIS J M, et al. Salt marsh-mangrove ecotones:Using structural gradients to investigate the effects of woody plant encroachment on plant-soil interactions and ecosystem carbon pools[J]. Journal of Ecology, 2016, 104(4): 1020-1031.
DOI URL |
[23] | ZHAO L X, ZHANG K, SITEUR K, et al. Fairy circles reveal the resilience of self-organized salt marshes[J]. Science Advances, 2021, 7(6): eabe1100. |
[24] |
MORRIS J T, SUNDARESHWAR P V, NIETCH C T, et al. Responses of coastal wetlands to rising sea level[J]. Ecology, 2002, 83(10): 2869-2877.
DOI URL |
[25] |
PENG D, CHEN L Z, PENNINGS S C, et al. Using a marsh organ to predict future plant communities in a Chinese estuary invaded by an exotic grass and mangrove[J]. Limnology and Oceanography, 2018, 63(6):2595-2605.
DOI URL |
[26] |
ZUO P, ZHAO S H, LIU C A, et al. Distribution of Spartina spp. along China’s coast[J]. Ecological Engineering, 2012, 40: 160-166.
DOI URL |
[27] |
LIU M, MAOD H, WANG Z M, et al. Rapid invasion of Spartina alterniflora in the coastal zone of mainland China: New observations from landsat OLI images[J]. Remote Sensing, 2018, 10(12): 1933.
DOI URL |
[28] |
LIU J E, HAN R M, SU H R, et al. Effects of exotic Spartina alterniflora on vertical soil organic carbon distribution and storage amount in coastal salt marshes in Jiangsu, China[J]. Ecological Engineering, 2017, 106: 132-139.
DOI URL |
[29] | 刘钰, 李秀珍, 闫中正, 等. 长江口九段沙盐沼湿地芦苇和互花米草生物量及碳储量[J]. 应用生态学报, 2013, 24(8):2129-2134. |
LIU Y, LI X Z, YAN Z Z, et al. Biomass and carbon storage of Phragmites australis and Spartina alterniflora in Jiuduan Shoal Wetland of Yangtze Estuary, East China[J]. Chinese Journal of Applied Ecology, 2013, 24(8):2129-2134. | |
[30] |
TAILLARDAT P, FRIESS D A, LUPASCU M. Mangrove blue carbon strategies for climate change mitigation are most effective at the national scale[J]. Biology Letters, 2018, 14(10): 20180251.
DOI URL |
[31] |
DARBY F A, TURNER R E. Below- and aboveground Spartina alterniflora production in a Louisiana salt marsh[J]. Estuaries and Coasts, 2008, 31(1): 223-231.
DOI URL |
[32] |
CHEN Y N, THOMPSON C, COLLINS M. Controls on creek margin stability by the root systems of saltmarsh vegetation, Beaulieu Estuary, Southern England[J]. Anthropocene Coasts, 2019, 2(1): 21-38.
DOI URL |
[33] | KAUFFMAN J B, DONATO D C. Protocols for the measurement, monitoring and reporting of structure, biomass and carbon stocks in mangrove forests[M]. Bogor, Indonesia: Cifor, 2012. |
[34] | JOHNSON B J, LOVELOCK C E, HERR D. Climate regulation: Salt marshes and blue carbon[M]//The Wetland Book. Dordrecht: Springer, 2016: 1185-1196. |
[35] |
OUYANG X G, LEE S Y. Improved estimates on global carbon stock and carbon pools in tidal wetlands[J]. Nature Communications, 2020, 11(1):317.
DOI PMID |
[36] |
BURDIGE D J. Preservation of organic matter in marine sediments:Controls, mechanisms, and an imbalance in sediment organic carbon budgets?[J]. Chemical Reviews, 2007, 107(2): 467-485.
DOI URL |
[37] |
ALLEN J R L. Morphodynamics of Holocene salt marshes: A review sketch from the Atlantic and Southern North Sea coasts of Europe[J]. Quaternary Science Reviews, 2000, 19(12): 1155-1231.
DOI URL |
[38] |
BOUILLON S, DAHDOUH-GUEBAS F, RAO A S, et al. Sources of organic carbon in mangrove sediments: Variability and possible ecological implications[J]. Hydrobiologia, 2003, 495(1): 33-39.
DOI URL |
[39] |
WELTJE G J. End-member modeling of compositional data: Numerical-statistical algorithms for solving the explicit mixing problem[J]. Mathematical Geology, 1997, 29(4):503-549.
DOI URL |
[40] | 高抒. 海洋沉积动力学研究导引[M]. 南京: 南京大学出版社, 2013:398. |
GAO S. Introduction to marine sedimentary dynamics research[M]. Nanjing: Nanjing University Press, 2013: 398. | |
[41] |
TUE N T, NGOC N T, QUY T D, et al. A cross-system analysis of sedimentary organic carbon in the mangrove ecosystems of Xuan Thuy National Park, Vietnam[J]. Journal of Sea Research, 2012, 67(1): 69-76.
DOI URL |
[42] | 曹磊, 宋金明, 李学刚, 等. 滨海盐沼湿地有机碳的沉积与埋藏研究进展[J]. 应用生态学报, 2013, 24(7):2040-2048. |
CAO L, SONG J M, LI X G, et al. Deposition and burial of organic carbon in coastal salt marsh: Research progress[J]. Chinese Journal of Applied Ecology, 2013, 24(7):2040-2048. | |
[43] | 高建华, 杨桂山, 欧维新. 苏北潮滩湿地不同生态带有机质来源辨析与定量估算[J]. 环境科学, 2005, 26(6):51-56. |
GAO J H, YANG G H, OU W X. Analysizing and quantitatively evaluating the organic matter source at different ecologic zones of tidal salt marsh, North Jiangsu Province[J]. Environmental Science, 2005, 26(6):51-56. | |
[44] | 夏添, 陈一宁, 高建华, 等. 植被演替对杭州湾南岸盐沼物质循环的影响[J]. 海洋科学, 2019, 43(10):35-42. |
XIA T, CHEN Y N, GAO J H, et al. Impact of vegetation succession on salt marsh material circulation in Southern Hangzhou Bay[J]. Marine Sciences, 2019, 43(10):35-42. | |
[45] |
DANG N Y T, MIR K A, KWON B O, et al. Sources and sequestration rate of organic carbon in sediments of the bare tidal flat ecosystems: A model approach[J]. Marine Environmental Research, 2023, 185: 105876.
DOI URL |
[46] | 钱跃东, 王勤耕. 针对大尺度区域的大气环境容量综合估算方法[J]. 中国环境科学, 2011, 31(3):504-509. |
QIAN Y D, WANG Q G. An integrated method of atmospheric environmental capacity estimation for large-scale region[J]. China Environment Science, 2011, 31(3): 504-509. | |
[47] | 赵美训, 张正斌. 箱式模型及其在计算碳循环上的应用[J]. 海洋通报, 1985, 4(1):78-87. |
ZHAO M X, ZHANG Z B. The box model and its application to the calculation of the carbon cycle[J]. Marine Science Bulletin, 1985, 4(1): 78-87. | |
[48] |
ANDRÉN O, KÄTTERER T. ICBM:The introductory carbon balance model for exploration of soil carbon balances[J]. Ecological Applications, 1997, 7(4): 1226-1236.
DOI URL |
[49] |
DANG N Y T, PARK H S, MIR K A, et al. Greenhouse gas emission model for tidal flats in the Republic of Korea[J]. Journal of Marine Science and Engineering, 2021, 9(11): 1181.
DOI URL |
[50] |
MILLIMAN J D, SYVITSKI J P M. Geomorphic/tectonic control of sediment discharge to the ocean: The importance of small mountainous rivers[J]. The Journal of Geology, 1992, 100(5): 525-544.
DOI URL |
[51] | MILLIMAN J D, FARNSWORTH K L. River discharge to the coastal ocean: a global synthesis[M]. Cambridge: Cambridge University Press, 2011. |
[52] | 王启栋, 宋金明, 李学刚. 黄河口湿地有机碳来源及其对碳埋藏提升策略的启示[J]. 生态学报, 2015, 35(2):568-576. |
WANG Q D, SONG J M, LI X G. Sources of organic carbon in the wetlands of the Yellow River Estuary and instructions on carbon burial promotion strategies[J]. Acta Ecologica Sinica, 2015, 35(2): 568-576. | |
[53] | CHEN J, WANG D Q, LI Y J, et al. The carbon stock and sequestration rate in tidal flats from coastal China[J]. Global Biogeochemical Cycles, 2020, 34(11): e2020GB006772. |
[54] | 刘敏, 侯立军, 许世远, 等. 长江口潮滩有机质来源的C、N稳定同位素示踪[J]. 地理学报, 2004, 59(6):918-926. |
LIU M, HOU L J, XU S Y, et al. Carbon and nitrogen stable isotopes as tracers to source organic matter in the Yangtze Estuary[J]. Acta Geographica Sinica, 2004, 59(6): 918-926.
DOI |
|
[55] | 田皓文. 长江口湿地沉积物生物标志物特征及其碳库来源指示意义[D]. 上海: 华东师范大学, 2022. |
TIAN H W. Characteristics of Biomarkers in wetland sediments of Yangtze Estuary and their significance in indicating the source of carbon pool[D]. Shanghai: East China Normal University, 2022. | |
[56] | 黄海军, 李凡, 张秀荣. 长江、 黄河水沙特征初步对比分析[M]. 北京: 海洋出版社, 2001:36-49. |
HUANGH J, LI F, ZHANG X R. Preliminary comparative analysis of water and sediment characteristics of the Yangtze River and the Yellow River[M]. Beijing: China Ocean Press, 2001: 36-49. | |
[57] |
CHEN Y N, CHEN N W, LI Y, et al. Multi-timescale sediment responses across a human impacted river-estuary system[J]. Journal of Hydrology, 2018, 560: 160-172.
DOI URL |
[58] |
CHEN Y N, LI Y, CAI T L, et al. A comparison of biohydrodynamic interaction within mangrove and saltmarsh boundaries[J]. Earth Surface Processes and Landforms, 2016, 41(13): 1967-1979.
DOI URL |
[59] | CHANG Y, CHEN Y N, LI Y. Flow modification associated with mangrove trees in a macro-tidal flat, Southern China[J]. Acta Oceanologica Sinica, 2019, 38(2): 1-10. |
[60] |
LIU B, CHEN Y N, CAI T L, et al. Estimating waves and currents at the saltmarsh edge using Acoustic Doppler Velocimeter data[J]. Frontiers in Marine Science, 2021, 8: 708116.
DOI URL |
[61] |
CHEN Y N, LI Y, THOMPSON C, et al. Differential sediment trapping abilities of mangrove and saltmarsh vegetation in a subtropical estuary[J]. Geomorphology, 2018, 318: 270-282.
DOI URL |
[62] |
ROGERS K, KELLEWAY J J, SAINTILAN N, et al. Wetland carbon storage controlled by millennial-scale variation in relative sea-level rise[J]. Nature, 2019, 567(7746): 91-95.
DOI |
[63] | 陈一宁, 陈鹭真, 蔡廷禄, 等. 滨海湿地生物地貌学进展及在生态修复中的应用展望[J]. 海洋与湖沼, 2020, 51(5):1055-1065. |
CHEN Y N, CHEN L Z, CAI T L, et al. Advances in biogeomorphology in coastal wetlands and its application in ecological restoration[J]. Oceanologia et Limnologia Sinica, 2020, 51(5): 1055-1065. | |
[64] |
FONSECA M S, FISHER J S. A comparison of canopy friction and sediment movement between four species of seagrass with reference to their ecology and restoration[J]. Marine Ecology Progress Series, 1986, 29: 15-22.
DOI URL |
[65] |
BOUMA T J, VAN DUREN L A, TEMMERMAN S, et al. Spatial flow and sedimentation patterns within patches of epibenthic structures: Combining field, flume and modelling experiments[J]. Continental Shelf Research, 2007, 27(8): 1020-1045.
DOI URL |
[66] |
NEUMEIER U. Velocity and turbulence variations at the edge of saltmarshes[J]. Continental Shelf Research, 2007, 27(8): 1046-1059.
DOI URL |
[67] |
HORSTMAN E M, DOHMEN-JANSSEN C M, HULSCHER S J M H. Flow routing in mangrove forests: A field study in Trang Province, Thailand[J]. Continental Shelf Research, 2013, 71: 52-67.
DOI URL |
[68] |
MAZDA Y, KOBASHI D, OKADA S. Tidal-scale hydrody-namics within mangrove swamps[J]. Wetlands Ecology and Management, 2005, 13(6): 647-655.
DOI URL |
[69] |
NEPF H M. Flow and transport in regions with aquatic vegetation[J]. Annual Review of Fluid Mechanics, 2012, 44: 123-142.
DOI URL |
[70] |
MOSSA M, BEN MEFTAH M, DE SERIO F, et al. How vegetation in flows modifies the turbulent mixing and spreading of jets[J]. Scientific Reports, 2017, 7(1): 6587.
DOI PMID |
[71] |
FAGHERAZZI S. Storm-proofing with marshes[J]. Nature Geoscience, 2014, 7(10): 701-702.
DOI |
[72] |
MÖLLER I, KUDELLA M, RUPPRECHT F, et al. Wave attenuation over coastal salt marshes under storm surge conditions[J]. Nature Geoscience, 2014, 7(10): 727-731.
DOI |
[73] |
NARAYAN S, BECK M W, WILSON P, et al. The value of coastal wetlands for flood damage reduction in the nor-theastern USA[J]. Scientific Reports, 2017, 7(1): 9463.
DOI |
[74] |
PAQUIER A E, HADDAD J, LAWLER S, et al. Quantifi-cation of the attenuation of storm surge components by a coastal wetland of the US mid Atlantic[J]. Estuaries and Coasts, 2017, 40(4): 930-946.
DOI URL |
[75] |
NEUMEIER U, AMOS C L. The influence of vegetation on turbulence and flow velocities in European salt-marshes[J]. Sedimentology, 2006, 53(2): 259-277.
DOI URL |
[76] | RUPPRECHT F, MÖLLER I, EVANS B, et al. Biophysical properties of salt marsh canopies—Quantifying plant stem flexibility and above ground biomass[J]. Coastal Engi-neering, 2015, 100: 48-57. |
[77] | 王爱军, 高抒, 贾建军, 等. 江苏王港盐沼的现代沉积速率[J]. 地理学报, 2005, 60(1):61-70. |
WANG A J, GAO S, JIA J J, et al. Contemporary sedimentation rates on salt marshes at Wanggang, Jiangsu, China[J]. Acta Geographica Sinica, 2005, 60(1): 61-70.
DOI |
|
[78] |
LOVELOCK C E, CAHOON D R, FRIESS D A, et al. The vulnerability of Indo-Pacific mangrove forests to sea-level rise[J]. Nature, 2015, 526(7574): 559-563.
DOI |
[79] |
VAN DE BROEK M, VANDENDRIESSCHE C, POPPEL-MONDE D, et al. Long-term organic carbon sequestration in tidal marsh sediments is dominated by old-aged allochthonous inputs in a macrotidal estuary[J]. Global Change Biology, 2018, 24(6): 2498-2512.
DOI PMID |
[80] |
KRAUSS K W, MCKEE K L, LOVELOCK C E, et al. How mangrove forests adjust to rising sea level[J]. The New Phytologist, 2014, 202(1): 19-34.
DOI URL |
[81] | 陈鹭真, 杨振昌, 林光辉. 全球变化下的中国红树林[M]. 厦门: 厦门大学出版社, 2021:251. |
CHEN L Z, YANG Z C, LIN G H. Mangroves in China under global change[M]. Xiamen: Xiamen University Press, 2021: 251. | |
[82] |
CHEN S, CHEN B, CHEN G, et al. Higher soil organic carbon sequestration potential at a rehabilitated mangrove comprised of Aegiceras corniculatum compared to Kandelia obovata[J]. Science of the Total Environment, 2021, 752:142279.
DOI URL |
[83] |
BROOKS H, MÖLLER I, CARR S, et al. Resistance of salt marsh substrates to near-instantaneous hydrodynamic forcing[J]. Earth Surface Processes and Landforms, 2021, 46(1): 67-88.
DOI URL |
[84] |
SÁNCHEZ J M, OTERO X L, IZCO J. Relationships between vegetation and environmental characteristics in a salt-marsh system on the coast of Northwest Spain[J]. Plant Ecology, 1998, 136(1): 1-8.
DOI URL |
[85] |
EWANCHUK P J, BERTNESS M D. The role of water-logging in maintaining forb pannes in northern New England salt marshes[J]. Ecology, 2004, 85(6):1568-1574.
DOI URL |
[86] | 陈鹭真, 王文卿, 林鹏. 潮汐淹水时间对秋茄幼苗生长的影响[J]. 海洋学报(中文版), 2005, 27(2):141-147. |
CHEN L Z, WANG W Q, LIN P. Influence of waterlogging time on the growth of Kandelia candel seedlings[J]. Acta Oceanologica Sinica (Chinese Version), 2005, 27(2):141-147. | |
[87] | 肖强, 郑海雷, 叶文景, 等. 水淹对互花米草生长及生理的影响[J]. 生态学杂志, 2005, 24(9):1025-1028. |
XIAO Q, ZHENG H L, YE W J, et al. Effects of waterlogging on growth and physiology of Spartina alterniflora[J]. Chinese Journal of Ecology, 2005, 24(9): 1025-1028. | |
[88] |
DENG Z F, AN S Q, ZHAO C J, et al. Sediment burial stimulates the growth and propagule production of Spartina alterniflora Loisel[J]. Estuarine, Coastal and Shelf Science, 2008, 76(4): 818-826.
DOI URL |
[89] |
SUN Z G, MOU X J, LIN G H, et al. Effects of sediment burial disturbance on seedling survival and growth of Suaeda salsa in the tidal wetland of the Yellow River Estuary[J]. Plant and Soil, 2010, 337(1): 457-468.
DOI URL |
[90] |
CAO H B, ZHU Z C, BALKE T, et al. Effects of sediment disturbance regimes on Spartina seedling establishment: Implications for salt marsh creation and restoration[J]. Limnology and Oceanography, 2018, 63(2): 647-659.
DOI URL |
[91] |
KIRWAN M L, MEGONIGAL J P. Tidal wetland stability in the face of human impacts and sea-level rise[J]. Nature, 2013, 504(7478): 53-60.
DOI |
[92] |
MARIOTTI G, CARR J. Dual role of salt marsh retreat: Long-term loss and short-term resilience[J]. Water Resources Research, 2014, 50(4): 2963-2974.
DOI URL |
[93] |
CHEN L Z, WANG W Q, ZHANG Y H, et al. Recent progresses in mangrove conservation, restoration and research in China[J]. Journal of Plant Ecology, 2009, 2(2): 45-54.
DOI URL |
[94] |
陈权, 马克明. 红树林生物入侵研究概况与趋势[J]. 植物生态学报, 2015, 39(3):283-299.
DOI |
CHEN Q, MA K M. Research overview and trend on biological invasion in mangrove forests[J]. Chinese Journal of Plant Ecology, 2015, 39(3): 283-299.
DOI |
|
[95] |
SMITH S V. Marine macrophytes as a global carbon sink[J]. Science, 1981, 211(4484): 838-840.
DOI PMID |
[96] | BOYSEN-JENSEN P, STATION C D B. Organic matter of the sea bottom[J]. The Journal of Ecology, 1915, 3(3): 182. |
[97] | 阮美娜, 李炎, 陈一宁, 等. 夏季台湾海峡的悬浮颗粒通道:现场粒度端元分析的证据[J]. 科学通报, 2012, 57(36):3522-3532. |
RUAN M N, LI Y, CHEN Y N, et al. Summer pathways for suspended particles across the Taiwan Strait: Evidence from the end-member analysis of in-situ particle size[J]. Chinese Science Bulletin, 2012, 57(36): 3522-3532. | |
[98] | 薛成凤, 贾建军, 高抒, 等. 中小河流对长江水下三角洲远端泥沉积的贡献:以椒江和瓯江为例[J]. 海洋学报, 2018, 40(5):75-89. |
XUE C F, JIA J J, GAO S, et al. The contribution of middle and small rivers to the distal mud of subaqueous Changjiang Delta: Results from Jiaojiang River and Oujiang River[J]. Haiyang Xuebao, 2018, 40(5): 75-89. | |
[99] | 杨守业, 韦刚健, 石学法. 地球化学方法示踪东亚大陆边缘源汇沉积过程与环境演变[J]. 矿物岩石地球化学通报, 2015, 34(5):902-910,884. |
YANG S Y, WEI G J, SHI X F. Geochemical approaches of tracing source-to-sink sediment processes and environmental changes at the east Asian continental margin[J]. Bulletin of Mineralogy, Petrology and Geochemistry. 2015, 34(5): 902-910, 884. | |
[100] | MURRAY A B, KNAAPEN M A F, TAL M, et al. Biomorphodynamics: Physical-biological feedbacks that shape landscapes[J]. Water Resources Research, 2008, 44(11): W11301. |
[101] |
TEMMINK R J M, LAMERS L P M, ANGELINI C, et al. Recovering wetland biogeomorphic feedbacks to restore the world’s biotic carbon hotspots[J]. Science, 2022, 376(6593): eabn1479.
DOI URL |
[102] | 刘秀娟, 高抒, 汪亚平. 淤长型潮滩剖面形态演变模拟:以江苏中部海岸为例[J]. 地球科学(中国地质大学学报), 2010, 35(4):542-550. |
LIU X J, GAO S, WANG Y P. Modeling the shore-normal profile shape evolution for an accretional tidal flat on the central Jiangsu coast[J]. Earth Science, 2010, 35(4): 542-550. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||