Journal of Marine Sciences ›› 2023, Vol. 41 ›› Issue (1): 68-81.DOI: 10.3969-j.issn.1001-909X.2023.01.006
Previous Articles Next Articles
TIAN Fangyan1(), HE Xianqiang1,2,3,*(), ZHU Bozhong2,3, GONG Fang2,3, ZHU Qiankun2,3
Received:
2022-06-16
Revised:
2022-09-07
Online:
2023-03-15
Published:
2023-04-28
CLC Number:
TIAN Fangyan, HE Xianqiang, ZHU Bozhong, GONG Fang, ZHU Qiankun. Remote sensing study of tidal flat area change in Yueqing Bay in recent 30 years considering tidal level correction[J]. Journal of Marine Sciences, 2023, 41(1): 68-81.
Add to citation manager EndNote|Ris|BibTeX
URL: http://hyxyj.sio.org.cn/EN/10.3969-j.issn.1001-909X.2023.01.006
卫星名称 | 成像日期 | 成像时刻 | 瞬时潮高/cm | 分辨率/m |
---|---|---|---|---|
Landsat 5 | 1988-07-07 | 09:56 | 184.54 | 30 |
Landsat 5 | 1988-11-12 | 09:56 | 637.99 | 30 |
Landsat 5 | 1994-05-05 | 09:45 | 291.12 | 30 |
Landsat 5 | 1994-07-24 | 09:43 | 618.52 | 30 |
Landsat 7 | 2000-05-13 | 10:17 | 242.70 | 30 |
Landsat 7 | 2000-09-18 | 10:16 | 573.47 | 30 |
Landsat 7 | 2006-08-18 | 10:15 | 188.33 | 30 |
Landsat 5 | 2006-08-26 | 10:19 | 589.55 | 30 |
Landsat 7 | 2010-11-01 | 10:14 | 191.05 | 30 |
Landsat 5 | 2010-11-09 | 10:15 | 621.41 | 30 |
Landsat 8 | 2015-04-13 | 10:25 | 243.67 | 30 |
Landsat 8 | 2015-08-03 | 10:25 | 654.55 | 30 |
Landsat 7 | 2020-09-25 | 09:51 | 210.99 | 30 |
Landsat 8 | 2020-04-10 | 10:25 | 652.99 | 30 |
Tab.1 Landsat satellite data used in this study
卫星名称 | 成像日期 | 成像时刻 | 瞬时潮高/cm | 分辨率/m |
---|---|---|---|---|
Landsat 5 | 1988-07-07 | 09:56 | 184.54 | 30 |
Landsat 5 | 1988-11-12 | 09:56 | 637.99 | 30 |
Landsat 5 | 1994-05-05 | 09:45 | 291.12 | 30 |
Landsat 5 | 1994-07-24 | 09:43 | 618.52 | 30 |
Landsat 7 | 2000-05-13 | 10:17 | 242.70 | 30 |
Landsat 7 | 2000-09-18 | 10:16 | 573.47 | 30 |
Landsat 7 | 2006-08-18 | 10:15 | 188.33 | 30 |
Landsat 5 | 2006-08-26 | 10:19 | 589.55 | 30 |
Landsat 7 | 2010-11-01 | 10:14 | 191.05 | 30 |
Landsat 5 | 2010-11-09 | 10:15 | 621.41 | 30 |
Landsat 8 | 2015-04-13 | 10:25 | 243.67 | 30 |
Landsat 8 | 2015-08-03 | 10:25 | 654.55 | 30 |
Landsat 7 | 2020-09-25 | 09:51 | 210.99 | 30 |
Landsat 8 | 2020-04-10 | 10:25 | 652.99 | 30 |
年份 | 1988年 | 1994年 | 2000年 | 2006年 | 2010年 | 2015年 | 2020年 |
---|---|---|---|---|---|---|---|
总体精度 | 0.960 | 0.985 | 0.985 | 0.980 | 0.970 | 0.960 | 0.990 |
Kappa系数 | 0.913 | 0.959 | 0.943 | 0.931 | 0.903 | 0.901 | 0.967 |
Tab.2 Summary of evaluation results of tidal flat extraction accuracy
年份 | 1988年 | 1994年 | 2000年 | 2006年 | 2010年 | 2015年 | 2020年 |
---|---|---|---|---|---|---|---|
总体精度 | 0.960 | 0.985 | 0.985 | 0.980 | 0.970 | 0.960 | 0.990 |
Kappa系数 | 0.913 | 0.959 | 0.943 | 0.931 | 0.903 | 0.901 | 0.967 |
卫星类型 | 上边界影像日期 | 下边界影像日期 | 成像时刻 | 瞬时潮位/cm | 潮滩面积/km2 | 潮滩面积差 |
---|---|---|---|---|---|---|
Landsat 8 | 2020年04月10日 | 2018年12月17日 | 10:25 | 231.2 | 114.36 | |
Sentinel-2 | 10:31 | 232.3 | 115.47 | +0.97% |
Tab.3 Comparison of tidal flat extraction results between Sentinel-2 and Landsat 8
卫星类型 | 上边界影像日期 | 下边界影像日期 | 成像时刻 | 瞬时潮位/cm | 潮滩面积/km2 | 潮滩面积差 |
---|---|---|---|---|---|---|
Landsat 8 | 2020年04月10日 | 2018年12月17日 | 10:25 | 231.2 | 114.36 | |
Sentinel-2 | 10:31 | 232.3 | 115.47 | +0.97% |
年份 | 滩涂面积/km2 | 滩涂面积 变化量/km2 | 潮滩面积变化 幅度/% |
---|---|---|---|
1988年 | 197.51 | / | / |
1994年 | 211.07 | +13.56 | +6.87 |
2000年 | 174.09 | -36.98 | -17.52 |
2006年 | 160.51 | -13.58 | -7.80 |
2010年 | 155.04 | -5.47 | -3.41 |
2015年 | 156.76 | +1.72 | +1.11 |
2020年 | 146.56 | -10.2 | -6.51 |
Tab.4 Changes of corrected tidal flat area of Yueqing Bay in recent 30 years
年份 | 滩涂面积/km2 | 滩涂面积 变化量/km2 | 潮滩面积变化 幅度/% |
---|---|---|---|
1988年 | 197.51 | / | / |
1994年 | 211.07 | +13.56 | +6.87 |
2000年 | 174.09 | -36.98 | -17.52 |
2006年 | 160.51 | -13.58 | -7.80 |
2010年 | 155.04 | -5.47 | -3.41 |
2015年 | 156.76 | +1.72 | +1.11 |
2020年 | 146.56 | -10.2 | -6.51 |
[1] |
ZHAO B X, LIU Y X, WANG L, et al. Stability evaluation of tidal flats based on time-series satellite images: A case study of the Jiangsu central coast, China[J]. Estuarine, Coastal and Shelf Science, 2022, 264: 107697.
DOI URL |
[2] | RYU J H, CHOI J K, LEE Y K. Potential of remote sensing in management of tidal flats: A case study of thematic mapping in the Korean tidal flats[J]. Ocean & Coastal Management, 2014, 102: 458-470. |
[3] |
BERNAL B, MITSCH W J. A comparison of soil carbon pools and profiles in wetlands in Costa Rica and Ohio[J]. Ecological Engineering, 2008, 34(4): 311-323.
DOI URL |
[4] | 章海波, 骆永明, 刘兴华, 等. 海岸带蓝碳研究及其展望[J]. 中国科学:地球科学, 2015, 45(11):1641-1648. |
ZHANG H B, LUO Y M, LIU X H, et al. Current researches and prospects on the coastal blue carbon[J]. Scientia Sinica Terrae, 2015, 45(11): 1641-1648.
DOI URL |
|
[5] | 王法明, 唐剑武, 叶思源, 等. 中国滨海湿地的蓝色碳汇功能及碳中和对策[J]. 中国科学院院刊, 2021, 36(3):241-251. |
WANG F M, TANG J W, YE S Y, et al. Blue carbon sink function of Chinese coastal wetlands and carbon neutrality strategy[J]. Bulletin of Chinese Academy of Sciences, 2021, 36(3): 241-251. | |
[6] |
JIA M M, WANG Z M, MAO D H, et al. Rapid, robust, and automated mapping of tidal flats in China using time series Sentinel-2 images and Google Earth Engine[J]. Remote Sensing of Environment, 2021, 255: 112285.
DOI URL |
[7] |
ZHAO C P, QIN C Z, TENG J K. Mapping large-area tidal flats without the dependence on tidal elevations: A case study of Southern China[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159: 256-270.
DOI URL |
[8] |
MURRAY N J, PHINN S R, DEWITT M, et al. The global distribution and trajectory of tidal flats[J]. Nature, 2019, 565(7738): 222-225.
DOI |
[9] |
RYU J H, KIM C H, LEE Y K, et al. Detecting the intertidal morphologic change using satellite data[J]. Estuarine, Coastal and Shelf Science, 2008, 78(4): 623-632.
DOI URL |
[10] |
WANG Y X, LIU Y X, JIN S, et al. Evolution of the topography of tidal flats and sandbanks along the Jiangsu coast from 1973 to 2016 observed from satellites[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 150: 27-43.
DOI URL |
[11] |
CHOI J K, RYU J H, LEE Y K, et al. Quantitative estimation of intertidal sediment characteristics using remote sensing and GIS[J]. Estuarine,Coastal and Shelf Science, 2010, 88(1): 125-134.
DOI URL |
[12] |
GUO M, LI J, SHENG C L, et al. A review of wetland remote sensing[J]. Sensors, 2017, 17(4): 777.
DOI URL |
[13] |
CAO W T, ZHOU Y Y, LI R, et al. Mapping changes in coastlines and tidal flats in developing Islands using the full time series of Landsat images[J]. Remote Sensing of Environment, 2020, 239: 111665.
DOI URL |
[14] |
MURRAY N J, CLEMENS R S, PHINN S R, et al. Tracking the rapid loss of tidal wetlands in the Yellow Sea[J]. Frontiers in Ecology and the Environment, 2014, 12(5): 267-272.
DOI URL |
[15] |
WANG J, CHEN J S, WEN Y, et al. Monitoring the coastal wetlands dynamics in Northeast Italy from 1984 to 2016[J]. Ecological Indicators, 2021, 129: 107906.
DOI URL |
[16] | 韩倩倩, 牛振国, 吴孟泉, 等. 基于潮位校正的中国潮间带遥感监测及变化[J]. 科学通报, 2019, 64(4):456-473. |
HAN Q Q, NIU Z G, WU M Q, et al. Remote-sensing monitoring and analysis of China intertidal zone changes based on tidal correction[J]. Chinese Science Bulletin, 2019, 64(4): 456-473. | |
[17] |
SALAMEH E, FRAPPART F, TURKI I, et al. Intertidal topography mapping using the waterline method from Sentinel-1 & -2 images: The examples of Arcachon and Veys Bays in France[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 163: 98-120.
DOI URL |
[18] |
MURRAY N, PHINN S, CLEMENS R, et al. Continental scale mapping of tidal flats across East Asia using the Landsat archive[J]. Remote Sensing, 2012, 4(11): 3417-3426.
DOI URL |
[19] |
CHEN Y, DONG J W, XIAO X M, et al. Land claim and loss of tidal flats in the Yangtze Estuary[J]. Scientific Reports, 2016, 6: 24018.
DOI PMID |
[20] | 李春平, 张灵杰, 董丽晶. 浙江乐清湾海岸带功能区划分与海洋产业发展[J]. 海洋通报, 2003, 22(5):38-43. |
LI C P, ZHANG L J, DONG L J. Coastal functional zoning of Yueqing Bay in Zhejiang Province and development of marine industries[J]. Marine Science Bulletin, 2003, 22(5): 38-43. | |
[21] | 罗锋, 廖光洪, 杨成浩, 等. 乐清湾水交换特征研究[J]. 海洋学研究, 2011, 29(2):79-88. |
LUO F, LIAO G H, YANG C H, et al. Study on the features of water exchange in Yueqingwan Bay[J]. Journal of Marine Sciences, 2011, 29(2): 79-88. | |
[22] | 李妙聪, 刘文胜, 江锦花. 乐清湾海水养殖环境水质质量时空变化及富营养化状况评价[J]. 海洋环境科学, 2021, 40(5):724-731. |
LI M C, LIU W S, JIANG J H. Analysis of spatial-temporal variation and nutritional status of environmental quality in the mariculture zone at the Yueqing Bay[J]. Marine Environmental Science, 2021, 40(5): 724-731. | |
[23] | 彭欣, 谢起浪, 陈少波, 等. 乐清湾潮间带大型底栖动物群落分布格局及其对人类活动的响应[J]. 生态学报, 2011, 31(4):954-963. |
PENG X, XIE Q L, CHEN S B, et al. The community distribution pattern of intertidal macrozoobenthos and the responses to human activities in Yueqing Bay[J]. Acta Ecologica Sinica, 2011, 31(4): 954-963. | |
[24] | 童朝锋, 安福伟, 章家保, 等. 乐清湾内外潮波变形及不对称性分析[J]. 海洋工程, 2020, 38(3):113-123. |
TONG C F, AN F W, ZHANG J B, et al. Analysis of deformation and asymmetry of tidal waves inside and outside Yueqing Bay[J]. The Ocean Engineering, 2020, 38(3): 113-123. | |
[25] | 国家海洋信息中心. 潮汐表(第二册)[M]. 北京:海洋出版社, 1988—2021. |
National Marine Data and Information Service Center. Tidal tables (Volume 2)[M]. Beijing: China Ocean Press, 1988—2021. | |
[26] | 温州市自然资源和规划局. 2019年温州市海洋灾害公报[R]. 温州: 自然资源和规划局, 2020. |
Wenzhou Bureau of Natural Resources and Planning. Wenzhou marine environment bulletin 2019[R]. Wenzhou: Wenzhou Bureau of Natural Resources and Planning, 2020. | |
[27] | 温州市统计局. 2021温州统计年鉴[R]. 温州: 温州市统计局, 2021. |
Wenzhou Municipal Bureau of Statistics. 2021 Wenzhou statistical yearbook[R]. Wenzhou: Wenzhou Municipal Bureau of Statistics, 2021. | |
[28] | 张旭凯, 张霞, 杨邦会, 等. 结合海岸类型和潮位校正的海岸线遥感提取[J]. 国土资源遥感, 2013, 25(4):91-97. |
ZHANG X K, ZHANG X, YANG B H, et al. Coastline extraction using remote sensing based on coastal type and tidal correction[J]. Remote Sensing for Land & Resources, 2013, 25(4): 91-97. | |
[29] | 徐涵秋. 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J]. 遥感学报, 2005, 9(5):589-595. |
XU H Q. A study on information extraction of water body with the modified normalized difference water index (MNDWI)[J]. Journal of Remote Sensing, 2005, 9(5): 589-595. | |
[30] |
OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62-66.
DOI URL |
[31] | 张继敏, 李凤全, 王天阳. 浙江乐清湾海岸带人为干扰度的分形研究[J]. 科技通报, 2017, 33(7):29-33. |
ZHANG J M, LI F Q, WANG T Y. Study on degree of hemeroby in Yueqing Bay coastal zone in Zhejiang based on fractal dimension[J]. Bulletin of Science and Technology, 2017, 33(7): 29-33. | |
[32] | 夏涵韬, 隆院男, 刘诚, 等. 1973—2018年珠江三角洲海岸线时空演变分析[J]. 海洋学研究, 2020, 38(2):26-37. |
XIA H T, LONG Y N, LIU C, et al. Spatio-temporal evolution analysis of the coastline in the Pearl River Delta from 1973 to 2018[J]. Journal of Marine Sciences, 2020, 38(2): 26-37. | |
[33] |
COHEN J. A coefficient of agreement for nominal scales[J]. Educational and Psychological Measurement, 1960, 20(1): 37-46.
DOI URL |
[34] |
PASSERI D L, HAGEN S C, MEDEIROS S C, et al. The dynamic effects of sea level rise on low-gradient coastal landscapes: A review[J]. Earth’s Future, 2015, 3(6): 159-181.
DOI URL |
[35] |
SPENCER T, SCHUERCH M, NICHOLLS R J, et al. Global coastal wetland change under sea-level rise and related stresses: The DIVA Wetland Change Model[J]. Global and Planetary Change, 2016, 139: 15-30.
DOI URL |
[36] | 胡春宏, 王延贵, 陈森美, 等. 浙江沿海海域泥沙变化及其对滩涂变化的影响[J]. 浙江水利科技, 2012, 40(6):1-4. |
HU C H, WANG Y G, CHEN S M, et al. The variation of coastal-sediment on the coast line in Zhejiang Province and its impact on the variation of shoals[J]. Zhejiang Hydrotechnics, 2012, 40(6): 1-4. | |
[37] | 杨晓东, 姚炎明, 蒋国俊, 等. 乐清湾悬沙输移机制分析[J]. 海洋通报, 2011, 30(1):53-59. |
YANG X D, YAO Y M, JIANG G J, et al. Study on the transport mechanism of suspended sediment in Yueqing Bay[J]. Marine Science Bulletin, 2011, 30(1): 53-59. | |
[38] | 闵建雄, 李广雪, 乔璐璐, 等. 基于MODIS的浙闽近海表层悬浮体时空变化特征分析[J]. 海洋地质前沿, 2022, 38(10):69-78. |
MIN J X, LI G X, QIAO L L, et al. Temporal-spatial variation of surface suspended matter in Zhejiang-Fujian coastal area based on MODIS[J]. Marine Geology Frontiers, 2022, 38(10): 69-78. | |
[39] | 巩明, 李伯根, 周鸿权. 乐清湾大乌港水道冲淤变化分析[J]. 海洋通报, 2011, 30(2):206-213. |
GONG M, LI B G, ZHOU H Q. Calculation of the amount and analysis of the trend of siltation and erosion in Dawugang channel of Yueqing Bay[J]. Marine Science Bulletin, 2011, 30(2): 206-213. | |
[40] | 吴雪枫, 何青, 郭磊城, 等. 杭州湾北岸多年水沙特性变化及原因探讨[J]. 长江流域资源与环境, 2021, 30(4):839-848. |
WU X F, HE Q, GUO L C, et al. Changes of hydrodynamics, sediment transport, and morphology along the north bank of Hangzhou Bay between 1982 and 2017[J]. Resources and Environment in the Yangtze Basin, 2021, 30(4): 839-848. | |
[41] |
WANG X X, XIAO X M, ZOU Z H, et al. Tracking annual changes of coastal tidal flats in China during 1986-2016 through analyses of Landsat images with Google Earth Engine[J]. Remote Sensing of Environment, 2020, 238: 110987.
DOI URL |
[42] | 伍善庆. 浅议漩门港围海工程对乐清湾海洋资源及环境的影响[J]. 海洋信息, 2000(3):17-19. |
WU S Q. Discussion on the influence of Xuanmen Port reclamation project on marine resources and environment in Yueqing Bay[J]. Marine Information, 2000(3): 17-19. | |
[43] | LI J, YAO Y M, LI X Y, et al. Numerical analysis on water exchange and its response to the coastal engineering in the Yueqing Bay in China[J]. Acta Oceanologica Sinica, 2008, 27(Z1): 60-73. |
[44] | 王诚超, 潘国富, 许雪峰, 等. 乐清湾水域纳潮量演变分析[J]. 海洋科学, 2017, 41(8):76-85. |
WANG C C, PAN G F, XU X F, et al. Analysis of evolution of tidal prism of the Yueqing Bay[J]. Marine Sciences, 2017, 41(8): 76-85. | |
[45] |
YAN J F, ZHAO S Y, SU F Z, et al. Tidal flat extraction and change analysis based on the RF-W model: A case study of Jiaozhou Bay, East China[J]. Remote Sensing, 2021, 13(8): 1436.
DOI URL |
[1] | LIU Yuening, GONG Fang, HE Xianqiang, JIN Xuchen. Long-term changes of CODMn flux into the sea: Retrieval of spectral information from remote sensing images of Oujiang River [J]. Journal of Marine Sciences, 2023, 41(1): 45-54. |
[2] | LIU Tingyu, BAI Yan, ZHU Bozhong, LI Teng, GONG Fang. Satellite retrieval algorithm of high spatial resolution sea surface partial pressure of CO2: Application of machine learning in Xiangshan Bay in autumn [J]. Journal of Marine Sciences, 2023, 41(1): 82-95. |
[3] | LU Aiying, LI Peng, ZHU Haitian, CHEN Peng, ZHAO Yizhi. Identification of offshore oil and gas platform in the Bohai Sea based on multi-source satellite remote sensing [J]. Journal of Marine Sciences, 2022, 40(4): 82-89. |
[4] | JIANG Jin'gang, FENG Huiyun, ZHANG Yaguo, HE Xianqiang. Impact of spatial variability on the validation of ocean chlorophyll-a concentration remote sensing product [J]. Journal of Marine Sciences, 2021, 39(1): 9-19. |
[5] | LIU Yong, LU Wen-fang, YING Chao, LI Xin-wen, YAO Wen-wei. Resonance in the Yueqing Bay generated by March 11 Japan Tsunami [J]. Journal of Marine Sciences, 2019, 37(3): 31-39. |
[6] | LI Cheng, LI Huan, WANG Hui, GAO Jia, WANG Guo-song, DONG Jun-xing, PAN Song, LIU Ke-xiu. Data analysis of High Frequency Surface Wave Radar at Zhujiajian-Shengshan during Typhoon Chan-hom [J]. Journal of Marine Sciences, 2017, 35(1): 41-46. |
[7] | HAN Zhi-yuan, LI Meng-guo. Research on tidal flat evolution based on remote sensing and GIS methods around the Wendu Bay, Fujian [J]. Journal of Marine Sciences, 2015, 33(3): 42-47. |
[8] | QIU Sha-yi, LIANG Chu-jin, DONG Chang-ming, LIU Zheng-li. Analysis of the temporal and spatial variations in the wind and wave over the South China Sea [J]. Journal of Marine Sciences, 2013, 31(4): 1-9. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||